Electrochemical Device for the Synthesis of Fe3O4 Magnetic Nanoparticles

被引:10
作者
Rahimdad, Nastaran [1 ]
Khalaj, Ali [2 ]
Azarian, Ghasem [3 ,4 ]
Nematollahi, Davood [1 ]
机构
[1] Bu Ali Sina Univ, Fac Chem, Hamadan 6517838683, Iran
[2] Bu Ali Sina Univ, Agr Fac, Biosyst Engn Grp, Hamadan, Iran
[3] Hamadan Univ Med Sci, Fac Hlth, Dept Environm Hlth Engn, Hamadan 6531956784, Iran
[4] Hamadan Univ Med Sci, Res Ctr Hlth Sci, Hamadan 6531956784, Iran
关键词
IRON-OXIDE NANOPARTICLES; REDUCTION; TRANSFORMATION;
D O I
10.1149/2.0231902jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work introduced a new electrochemical device for the synthesis of Fe3O4 magnetic nanoparticles. It is established based on a scarified rotating cylindrical Fe anode in an alkaline aqueous medium, at room temperature, in the presence of NaCl, without any chemical agent or surfactant. This technique is easy to scale up and controllable, so that by changing the parameters such as the rotating speed, current density, electrode interval, and electrolysis time, the size and morphology of the particles can be changed. The physical properties of the Fe3O4 nanoparticles, were characterized by FT-IR, SEM, VSM, DLS, and XRD methods. From the standpoint of environmental sustainability and economic efficiency, this technique's use of water as both a solvent and reactant (OH- generation), safe and cheap reagents, electricity instead of chemical reagents, room temperature and pressure, short reaction time, and scalability. (C) 2019 The Electrochemical Society.
引用
收藏
页码:E1 / E6
页数:6
相关论文
共 33 条
[11]   Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties [J].
Faiyas, A. P. A. ;
Vinod, E. M. ;
Joseph, J. ;
Ganesan, R. ;
Pandey, R. K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (04) :400-404
[12]   Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents [J].
Franger, S ;
Berthet, P ;
Berthon, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2004, 8 (04) :218-223
[13]   Tailor-made nanoparticles via gas-phase synthesis [J].
Gutsch, A ;
Mühlenweg, H ;
Krämer, M .
SMALL, 2005, 1 (01) :30-46
[14]   Formation of magnetite in the presence of ferric oxyhydroxides [J].
Ishikawa, T ;
Kondo, Y ;
Yasukawa, A ;
Kandori, K .
CORROSION SCIENCE, 1998, 40 (07) :1239-1251
[15]   Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2 [J].
Jiang Chumming ;
Lin Xiangqin .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (08) :1273-1278
[16]   Design, Construction and Evaluation of a 3D Printed Electrochemical Flow Cell for the Synthesis of Magnetite Nanoparticles [J].
Lozano, I ;
Lopez, C. ;
Menendez, N. ;
Casillas, N. ;
Herrasti, P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :H688-H697
[17]   New Insights into the Electrochemical Formation of Magnetite Nanoparticles [J].
Lozano, I. ;
Casillas, N. ;
Ponce de Leon, C. ;
Walsh, F. C. ;
Herrasti, P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) :D184-D191
[18]   One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles [J].
Mazario, Eva ;
Sanchez-Marcos, Jorge ;
Menendez, Nieves ;
Herrasti, Pilar ;
Garcia-Hernandez, Mar ;
Munoz-Bonilla, Alexandra .
RSC ADVANCES, 2014, 4 (89) :48353-48361
[19]   Magnetite nanoparticles stabilized with polymeric bilayer of poly(ethylene glycol) methyl ether-poly(ε-caprolactone) copolymers [J].
Meerod, Siraprapa ;
Tumcharern, Gamolwan ;
Wichai, Uthai ;
Rutnakornpituk, Metha .
POLYMER, 2008, 49 (18) :3950-3956
[20]   Synthesis and physical characterization of magnetite nanoparticles for biomedical applications [J].
Muerbe, Julia ;
Rechtenbach, Annett ;
Toepfer, Joerg .
MATERIALS CHEMISTRY AND PHYSICS, 2008, 110 (2-3) :426-433