Bounding ζ (s) in the critical strip

被引:33
作者
Carneiro, Emanuel [1 ]
Chandee, Vorrapan [2 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Riemann zeta-function; Extremal functions; Exponential type;
D O I
10.1016/j.jnt.2010.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming the Riemann Hypothesis, we make use of the recently discovered (Carneiro et al. (preprint) [1]) extremal majorants and minorants of prescribed exponential type for the function log(4+x(2)/(alpha-1/2)(2)+x(2)) to find upper and lower bounds with explicit constants for log vertical bar zeta(alpha + it)vertical bar in the critical strip, extending the work of Chandee and Soundararajan (in press) [4]. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:363 / 384
页数:22
相关论文
共 14 条
[1]  
Carneiro E., Gaussian Subordination for the Beurling-Selberg Extremal Problem
[2]   SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS. II [J].
Carneiro, Emanuel ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (11) :5803-5843
[3]  
CHANDEE V, B LOND MATH IN PRESS
[4]   EXPLICIT UPPER BOUNDS FOR L-FUNCTIONS ON THE CRITICAL LINE [J].
Chandee, Vorrapan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) :4049-4063
[5]  
DAVENPORT H., 2000, Grad. Texts in Math., V74
[6]   A note on S(t) and the zeros of the riemann zeta-function [J].
Goldston, D. A. ;
Gonek, S. M. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :482-486
[7]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[8]  
Littlewood J. E., 1924, P CAMBRIDGE PHILOS S, V22, P295
[9]  
Littlewood J.E., 1928, Proc. London Math. Soc. (2), V27, P349
[10]  
Littlewood JE, 1926, P LOND MATH SOC, V24, P175