RepVGG: Making VGG-style ConvNets Great Again

被引:1305
作者
Ding, Xiaohan [1 ,2 ,3 ]
Zhang, Xiangyu [3 ]
Ma, Ningning [3 ,4 ]
Han, Jungong [5 ]
Ding, Guiguang [1 ,2 ]
Sun, Jian [3 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol BNRis, Beijing, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
[3] MEGVII Technol, Beijing, Peoples R China
[4] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[5] Aberystwyth Univ, Comp Sci Dept, Aberystwyth SY23 3FL, Dyfed, Wales
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.01352
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3 x 3 convolution and ReLU, while the training-time model has a multi-branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1 accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable accuracy-speed trade-off compared to the stateof-the-art models like EfficientNet and RegNet.
引用
收藏
页码:13728 / 13737
页数:10
相关论文
共 42 条
[1]  
[Anonymous], 2015, PROCIEEE CONFCOMPUT
[2]  
Chetlur S., 2014, ARXIV
[3]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[4]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[5]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Centripetal SGD for Pruning Very Deep Convolutional Networks With Complicated Structure [J].
Ding, Xiaohan ;
Ding, Guiguang ;
Guo, Yuchen ;
Han, Jungong .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4938-4948
[8]  
Ding XH, 2018, AAAI CONF ARTIF INTE, P6797
[9]  
Ding Xiaohan, 2019, P 36 INT C MACHINE L, P1607
[10]  
Guo Shuxuan, 2020, ADV NEUR IN, V33