A state estimator for nonlinear stochastic systems based on Dirac mixture approximations

被引:0
作者
Schrempf, Oliver C. [1 ]
Hanebeck, Uwe D. [1 ]
机构
[1] Univ Karlsruhe, Intelligent Sensor Actuator Syst Lab, Karlsruhe, Germany
来源
ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL SPSMC: SIGNAL PROCESSING, SYSTEMS MODELING AND CONTROL | 2007年
关键词
nonlinear dynamic systems; stochastic filter; Dirac mixture;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a filter approach for estimating the state of nonlinear dynamic systems based on recursive approximation of posterior densities by means of Dirac mixture functions. The filter consists of a prediction step and a filter step. The approximation approach is based on a systematic minimization of a distance measure and is hence optimal and deterministic. In contrast to non-deterministic methods we are able to determine the optimal number of components in the Dirac mixture. A further benefit of the proposed approach is the consideration of measurements during the approximation process in order to avoid parameter degradation.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 15 条
[1]   NONLINEAR BAYESIAN ESTIMATION USING GAUSSIAN SUM APPROXIMATIONS [J].
ALSPACH, DL ;
SORENSON, HW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) :439-&
[2]  
[Anonymous], THESIS U LONDON
[4]  
Bucy, 1969, J ASTRONAUT SCI, V17, P80
[5]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208
[6]  
Doucet A., 2001, SEQUENTIAL MONTE CAR, V1, DOI [10.1007/978-1-4757-3437-9, DOI 10.1007/978-1-4757-3437-9]
[7]   BAYESIAN-INFERENCE IN ECONOMETRIC-MODELS USING MONTE-CARLO INTEGRATION [J].
GEWEKE, J .
ECONOMETRICA, 1989, 57 (06) :1317-1339
[8]   Progressive bayes: A new framework for nonlinear state estimation [J].
Hanebeck, UD ;
Briechle, K ;
Rauh, A .
MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2003, 2003, 5099 :256-267
[9]  
HUBER M, 2006, IEEE INT C MULT FUS, P98
[10]  
HUBER MF, 2007, INT C INF PROC SENS