Biohydrogen production from space crew's waste simulants using thermophilic consolidated bioprocessing

被引:26
作者
Wang, Jia [1 ]
Bibra, Mohit [1 ]
Venkateswaran, Kasthuri [2 ]
Salem, David R. [1 ,3 ,4 ]
Rathinam, Navanietha Krishnaraj [1 ]
Gadhamshetty, Venkataraman [5 ,6 ]
Sani, Rajesh K. [1 ,4 ]
机构
[1] South Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA
[2] CALTECH, Jet Prop Lab, Biotechnol & Planetary Protect Grp, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[3] South Dakota Sch Mines & Technol, Dept Mat & Met Engn, Rapid City, SD 57701 USA
[4] Biomat CNAM Bio Ctr, Composite & Nanocomposite Adv Mfg Ctr, Rapid City, SD 57701 USA
[5] South Dakota Sch Mines & Technol, Dept Civil & Environm Engn, Rapid City, SD 57701 USA
[6] SERC, Rapid City, SD 57701 USA
基金
美国国家航空航天局;
关键词
Biohydrogen; Space crew's waste; Human waste simulants; Thermophilic consortia; MIXED CULTURE; HYDROGEN-PRODUCTION; DEGREES-C; FERMENTATION; BACTERIA; SLUDGE;
D O I
10.1016/j.biortech.2018.01.109
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Human waste simulants were for the first time converted into biohydrogen by a newly developed anaerobic microbial consortium via thermophilic consolidated bioprocessing. Four different BioH2-producing consortia (denoted as C1, C2, C3 and C4) were isolated, and developed using human waste simulants as substrate. The thermophilic consortium C3, which contained Thermoanaerobacterium, Caloribacterium, and Caldanaerobius species as the main constituents, showed the highest BioH(2) production (3.999 mmol/g) from human waste simulants under optimized conditions (pH 7.0 and 60 degrees C). The consortium C3 also produced significant amounts of BioH2 (5.732 mmol/g and 2.186 mmol/g) using wastewater and activated sludge, respectively. The developed consortium in this study is a promising candidate for H-2 production in space applications as in situ resource utilization.
引用
收藏
页码:349 / 353
页数:5
相关论文
共 22 条
  • [1] Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge
    Alves, Joana I.
    Stams, Alfons J. M.
    Plugge, Caroline M.
    Alves, M. Madalena
    Sousa, Diana Z.
    [J]. FEMS MICROBIOLOGY ECOLOGY, 2013, 86 (03) : 590 - 597
  • [2] Blenner M, 2015, SYNTHETIC BIOL RECYC
  • [3] Caraccio A. J., 2014, 65 INT ASTR C TOR CA
  • [4] Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C
    Carver, Sarah M.
    Nelson, Michael C.
    Lepisto, Raghida
    Yu, Zhongtang
    Tuovinen, Olli H.
    [J]. BIORESOURCE TECHNOLOGY, 2012, 104 : 424 - 431
  • [5] Eberhart J., 1967, SCI NEWS, P236
  • [6] Hydrogen production from agricultural waste by dark fermentation: A review
    Guo, Xin Mei
    Trably, Eric
    Latrille, Eric
    Carrere, Helene
    Steyer, Jean-Philippe
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) : 10660 - 10673
  • [7] Biohydrogen production from sago starch in wastewater using an enriched thermophilic mixed culture from hot spring
    Hasyim, Rafiani
    Imai, Tsuyoshi
    O-Thong, Sompong
    Sulistyowati, Liliek
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (21) : 14162 - 14171
  • [8] Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria
    Hiligsmann, Serge
    Masset, Julien
    Hamilton, Christopher
    Beckers, Laurent
    Thonart, Philippe
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (04) : 3810 - 3818
  • [9] Hintze P., 2012, PROC AIAA SPACE C
  • [10] Hintze P. E., 2013, AIAA SPAC 2013 C, P10