Constant angle surfaces in product spaces

被引:11
作者
Dillen, Franki [1 ]
Kowalczyk, Daniel [1 ]
机构
[1] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Louvain, Belgium
关键词
Product spaces; Constant angle; Sine-Gordon equation; TOTALLY GEODESIC SUBMANIFOLDS; LAGRANGIAN SURFACES; MINIMAL-SURFACES; S-2;
D O I
10.1016/j.geomphys.2012.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all the surfaces in M-2(c(1)) x M-2(c(2)) for which the tangent space TpM2 makes constant angles with T-p(M-2(c(1)) x {p(2)}) (or equivalently with T-p({p(1)} x M-2(c(2))) for every point p = (p(1), p(2)) of M-2. Here M-2(c(1)) and M-2(c(2)) are 2-dimensional space forms, not both flat. As a corollary we give a classification of all the totally geodesic surfaces in M-2(c(1)) x M-2(c(2)). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1414 / 1432
页数:19
相关论文
共 17 条
  • [1] [Anonymous], PITMAN MONOGRAPHS SU
  • [2] Bayard P., 2011, SURFACES R4 CONSTANT
  • [3] Castro I, 2007, COMMUN ANAL GEOM, V15, P217
  • [4] TOTALLY GEODESIC SUB-MANIFOLDS OF SYMMETRIC SPACES .2.
    CHEN, BY
    NAGANO, T
    [J]. DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) : 405 - 425
  • [5] TOTALLY GEODESIC SUBMANIFOLDS OF SYMMETRIC SPACES .1.
    CHEN, BY
    NAGANO, T
    [J]. DUKE MATHEMATICAL JOURNAL, 1977, 44 (04) : 745 - 755
  • [6] CHEN BY, 1975, GEOM DEDICATA, V4, P253
  • [7] Dillen F, 2007, MONATSH MATH, V152, P89, DOI 10.1007/s00605-007-0461-9
  • [8] Constant angle surfaces in H2 x R
    Dillen, Franki
    Munteanu, Marian Ioan
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (01): : 85 - 97
  • [9] Jordan C., 1875, Bulletin de la Socit Mathmatique de France, V3, P103, DOI 10.24033/bsmf.90
  • [10] Kimura M, 2007, OSAKA J MATH, V44, P829