An algebraic characterisation for Finsler metrics of constant flag curvature

被引:1
作者
Bucataru, Ioan [1 ]
Fodor, Dan Gregorian [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi, Romania
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2021年 / 62卷 / 03期
关键词
Finsler spaces; Constant flag curvature; Bianchi identities; Beltrami Theorem;
D O I
10.1007/s13366-020-00511-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that a Finsler metrics has constant flag curvature if and only if the curvature of the induced nonlinear connection satisfies an algebraic identity with respect to some arbitrary second rank tensors. Such algebraic identity appears as an obstruction to the formal integrability of some operators in Finsler geometry, Bucataru and Muzsnay (Symmetry Integr Geom Methods Appl 7:114, 2011), Grifone and Muzsnay (Variational principles for second-order differential equations. World Scientific, Singapore, 2000). This algebraic characterisation, for Finsler metrics of constant flag curvature, allows to provide yet another proof for the Finslerian version of Beltrami's theorem, Bucataru and Cretu (J Geom Anal 30:617-631, 2020; Publ Math Debr,, 2019).
引用
收藏
页码:745 / 754
页数:10
相关论文
共 12 条