Signed Total k-independence in Digraphs

被引:0
|
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Digraph; Signed total k-independence function; Signed total k-independence number; Nordhaus-Gaddum type results; GRAPHS;
D O I
10.2298/FIL1410121V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 2 be an integer. A function f : V(D) -> {-1, 1} defined on the vertex set V(D) of a digraph D is a signed total k-independence function if Sigma(x is an element of N-(v)) f(x) <= k - 1 for each v is an element of V(D), where N-(v) consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by w(f) = Sigma(x is an element of V(D)) f(x). The maximum of weights w(f), taken over all signed total k-independence functions f on D, is the signed total k-independence number alpha(k)(st) (D) of D. In this work, we mainly present upper bounds on alpha(k)(st) (D), as for example alpha(k)(st) (D) <= n - 2 [(Lambda(-) + 1 - k)/2] and alpha(k)(st) (D) <= Lambda(+) + 2k - delta(+) - 2/Delta(+) + delta(+). n, where n is the order, Delta(-) the maximum indegree and Delta(+) and delta(+) are the maximum and minimum outdegree of the digraph D. Some of our results imply well-known properties on the signed total 2-independence number of graphs.
引用
收藏
页码:2121 / 2130
页数:10
相关论文
共 50 条
  • [21] Domination number, independent domination number and k-independence number in trees
    Cui, Qing
    Zou, Xu
    DISCRETE APPLIED MATHEMATICS, 2025, 366 : 176 - 184
  • [22] THE TOTAL {k}-DOMATIC NUMBER OF DIGRAPHS
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 461 - 471
  • [23] Signed Roman domination in digraphs
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (03) : 456 - 467
  • [24] Signed Roman domination in digraphs
    S. M. Sheikholeslami
    L. Volkmann
    Journal of Combinatorial Optimization, 2015, 30 : 456 - 467
  • [25] Negative Signed Domination in Digraphs
    Li, Wensheng
    MECHATRONIC SYSTEMS AND AUTOMATION SYSTEMS, 2011, 65 : 145 - 147
  • [26] Ordering of Bicyclic Signed Digraphs by Energy
    Yang, Xiuwen
    Wang, Ligong
    FILOMAT, 2020, 34 (13) : 4297 - 4309
  • [27] Weak Signed Roman Domination in Digraphs
    Volkmann, Lutz
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (04): : 497 - 508
  • [28] Total rainbow connection of digraphs
    Lei, Hui
    Liu, Henry
    Magnant, Colton
    Shi, Yongtang
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 288 - 305
  • [29] Signed double Roman domination numbers in digraphs
    Amjadi, Jafar
    Pourhosseini, Fatemeh
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 194 - 205
  • [30] IOTA ENERGY ORDERINGS OF BICYCLIC SIGNED DIGRAPHS
    Yang, Xiuwen
    Wang, Ligong
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (03) : 187 - 200