Signed Total k-independence in Digraphs

被引:0
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Digraph; Signed total k-independence function; Signed total k-independence number; Nordhaus-Gaddum type results; GRAPHS;
D O I
10.2298/FIL1410121V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k >= 2 be an integer. A function f : V(D) -> {-1, 1} defined on the vertex set V(D) of a digraph D is a signed total k-independence function if Sigma(x is an element of N-(v)) f(x) <= k - 1 for each v is an element of V(D), where N-(v) consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by w(f) = Sigma(x is an element of V(D)) f(x). The maximum of weights w(f), taken over all signed total k-independence functions f on D, is the signed total k-independence number alpha(k)(st) (D) of D. In this work, we mainly present upper bounds on alpha(k)(st) (D), as for example alpha(k)(st) (D) <= n - 2 [(Lambda(-) + 1 - k)/2] and alpha(k)(st) (D) <= Lambda(+) + 2k - delta(+) - 2/Delta(+) + delta(+). n, where n is the order, Delta(-) the maximum indegree and Delta(+) and delta(+) are the maximum and minimum outdegree of the digraph D. Some of our results imply well-known properties on the signed total 2-independence number of graphs.
引用
收藏
页码:2121 / 2130
页数:10
相关论文
共 7 条
[1]  
Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[2]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[3]  
Sheikholeslami SM, 2011, UTILITAS MATHEMATICA, V85, P273
[4]  
Wang CP, 2008, AUSTRALAS J COMB, V41, P263
[5]  
Wang HC, 2011, UTILITAS MATHEMATICA, V85, P213
[6]  
Wang Haichao, 2007, UTILITAS MATHEMATICA, V74, P199
[7]   Signed total domination number of a graph [J].
Zelinka, B .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (02) :225-229