Calorimetry with deep learning: particle simulation and reconstruction for collider physics

被引:85
作者
Belayneh, Dawit [1 ]
Carminati, Federico [2 ]
Farbin, Amir [3 ]
Hooberman, Benjamin [4 ]
Khattak, Gulrukh [2 ,5 ]
Liu, Miaoyuan [6 ]
Liu, Junze [4 ]
Olivito, Dominick [7 ]
Pacela, Vitoria Barin [8 ]
Pierini, Maurizio [2 ]
Schwing, Alexander [4 ]
Spiropulu, Maria [9 ]
Vallecorsa, Sofia [2 ]
Vlimant, Jean-Roch [9 ]
Wei, Wei [4 ]
Zhang, Matt [4 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] European Org Nucl Res CERN, Geneva, Switzerland
[3] Univ Texas Arlington, Arlington, TX 76019 USA
[4] Univ Illinois, Champaign, IL 61820 USA
[5] UET Peshawar, Peshawar, Pakistan
[6] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[7] Univ Calif San Diego, San Diego, CA 92103 USA
[8] Univ Helsinki, Helsinki, Finland
[9] CALTECH, Pasadena, CA 91125 USA
来源
EUROPEAN PHYSICAL JOURNAL C | 2020年 / 80卷 / 07期
基金
美国能源部; 美国国家科学基金会; 欧洲研究理事会;
关键词
NEURAL-NETWORKS;
D O I
10.1140/epjc/s10052-020-8251-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.
引用
收藏
页数:31
相关论文
共 47 条
[1]   Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC [J].
Aad, G. ;
Abajyan, T. ;
Abbott, B. ;
Abdallah, J. ;
Khalek, S. Abdel ;
Abdelalim, A. A. ;
Abdinov, O. ;
Aben, R. ;
Abi, B. ;
Abolins, M. ;
AbouZeid, U. S. ;
Abramowicz, H. ;
Abreu, H. ;
Acharya, B. S. ;
Adamczyk, L. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Agustoni, M. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Allbrooke, B. M. M. .
PHYSICS LETTERS B, 2012, 716 (01) :1-29
[2]  
Aad G, 2008, JOURNAL OF INSTRUMENTATION, V3, DOI [DOI 10.1088/1748-0221/3/08/S08003, 10.1088/1748-0221/3/08/S08003]
[3]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[4]   CLASSIFICATION OF THE HADRONIC DECAYS OF THE Z0 INTO B-QUARK AND C-QUARK PAIRS USING A NEURAL NETWORK [J].
ABREU, P ;
ADAM, W ;
ADYE, T ;
AGASI, E ;
ALEKSEEV, GD ;
ALGERI, A ;
ALLEN, P ;
ALMEHED, S ;
ALVSVAAG, SJ ;
AMALDI, U ;
ANASSONTZIS, EG ;
ANDREAZZA, A ;
ANTILOGUS, P ;
APEL, WD ;
APSIMON, RJ ;
ASMAN, B ;
AUGUSTIN, JE ;
AUGUSTINUS, A ;
BAILLON, P ;
BAMBADE, P ;
BARAO, F ;
BARATE, R ;
BARBIELLINI, G ;
BARDIN, DY ;
BARKER, G ;
BARONCELLI, A ;
BARRING, O ;
BARRIO, JA ;
BARTL, W ;
BATES, MJ ;
BATTAGLIA, M ;
BAUBILLIER, M ;
BECKS, KH ;
BEESTON, CJ ;
BEGALLI, M ;
BEILLIERE, P ;
BELOKOPYTOV, Y ;
BELTRAN, P ;
BENEDIC, D ;
BENVENUTI, AC ;
BERGGREN, M ;
BERTRAND, D ;
BIANCHI, F ;
BILENKY, MS ;
BILLOIR, P ;
BJARNE, J ;
BLOCH, D ;
BLYTH, S ;
BOCCI, V ;
BOGOLUBOV, PN .
PHYSICS LETTERS B, 1992, 295 (3-4) :383-395
[5]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[6]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.3889046
[7]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.3889059
[8]  
[Anonymous], 2015, Tech. Rep.
[9]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZENODO.1207017
[10]  
Arjovsky M, 2017, PR MACH LEARN RES, V70