Nonabelian localization in equivariant K-theory and Riemann-Roch for quotients

被引:18
作者
Edidin, D [1 ]
Graham, W
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Georgia, Dept Math, Boyd Grad Studies Res Ctr, Athens, GA 30602 USA
关键词
equivariant K-theory; Riemann-Roch theorems;
D O I
10.1016/j.aim.2005.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a localization formula in equivariant algebraic K-theory for an arbitrary complex algebraic group acting with finite stabilizer on a smooth algebraic space. This extends to non-diagonalizable groups the localization formulas of Nielsen [Diagonalizably linearized coherent sheaves, Bull. Soc. Math. France 102 (1974) 85-97] and Thomason [Une formule de Lefschetz en K-theorie equivariante algebrique, Duke Math. J. 68(3) (1992) 447-462]. As an application we give a Riemann-Roch formula for quotients of smooth algebraic spaces by proper group actions. This formula extends previous work of Toen [Theoremes de Riemann-Roch pour les champs de Deligne-Mumford, K-Theory 18(1) (1999) 33-76] and the authors [Riemann-Roch for quotients and Todd classes of sirnplicial toric varieties, Comm. Algebra 31 (2003) 3735-3752]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:547 / 582
页数:36
相关论文
共 30 条
  • [1] [Anonymous], 1967, I HAUTES ETUDES SCI
  • [2] Atiyah M., 1974, LECT NOTES MATH, V401, DOI 10.1007/BFb0057821
  • [3] BAUM P, 1975, I HAUTES ETUDES SCI, V45
  • [4] BOREL A, 1991, LINEAR ALGEBRAIC GRO
  • [5] Brocker T., 1995, GRADUATE TEXTS MATH, V98
  • [6] Chriss N., 1997, Representation Theory and Complex Geometry
  • [7] Edidin D, 2000, DUKE MATH J, V102, P567
  • [8] Riemann-Roch for quotients and Todd classes of simplicial toric varieties
    Edidin, D
    Graham, W
    [J]. COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) : 3735 - 3752
  • [9] Fulton W., 2013, INTERSECTION THEORY, DOI DOI 10.1007/978-3-662-02421-8
  • [10] Grothendieck A., 1966, I HAUTES ETUDES SCI, V28