Unsupervised nonlinear feature selection algorithm via kernel function

被引:9
|
作者
Li, Jiaye [1 ]
Zhang, Shichao [1 ]
Zhang, Leyuan [1 ]
Lei, Cong [1 ]
Zhang, Jilian [2 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Guangxi, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; Kernel function; Sparse regularization factor;
D O I
10.1007/s00521-018-3853-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is one of the important methods of data preprocessing, but the general feature selection algorithm has the following shortcomings: (1) Noise and outliers cannot be ruled out so that the algorithm does not work well. (2) They only consider the linear relationship between data without considering the nonlinear relationship between data. For this reason, an unsupervised nonlinear feature selection algorithm via kernel function is proposed in this paper. First, each data feature is mapped to a kernel space by a kernel function. In this way, nonlinear feature selection can be performed. Secondly, the low-rank processing of the kernel coefficient matrix is used to eliminate the interference of noise samples. Finally, the feature selection is performed through a sparse regularization factor in the kernel space. Experimental results show that our algorithm has better results than contrast algorithms.
引用
收藏
页码:6443 / 6454
页数:12
相关论文
共 50 条
  • [31] A Novel Crowding Clustering Algorithm for Unsupervised and Supervised Filter Feature Selection Problem
    Ghanem, Khadoudja
    Layeb, Abdesslem
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [32] Unsupervised Representative Feature Selection Algorithm Based on Information Entropy and Relevance Analysis
    Wang, Yintong
    IEEE ACCESS, 2018, 6 : 45317 - 45324
  • [33] An unsupervised approach to feature discretization and selection
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION, 2012, 45 (09) : 3048 - 3060
  • [34] Unsupervised feature selection via low-rank approximation and structure learning
    Wang, Shiping
    Wang, Han
    KNOWLEDGE-BASED SYSTEMS, 2017, 124 : 70 - 79
  • [35] Unsupervised feature selection via joint local learning and group sparse regression
    Yue Wu
    Can Wang
    Yue-qing Zhang
    Jia-jun Bu
    Frontiers of Information Technology & Electronic Engineering, 2019, 20 : 538 - 553
  • [36] Unsupervised feature selection via joint local learning and group sparse regression
    Wu, Yue
    Wang, Can
    Zhang, Yue-qing
    Bu, Jia-jun
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2019, 20 (04) : 538 - 553
  • [37] Unsupervised feature selection via joint local learning and group sparse regression
    Yue WU
    Can WANG
    Yue-qing ZHANG
    Jia-jun BU
    FrontiersofInformationTechnology&ElectronicEngineering, 2019, 20 (04) : 538 - 553
  • [38] Unsupervised feature selection with graph learning via low-rank constraint
    Guangquan Lu
    Bo Li
    Weiwei Yang
    Jian Yin
    Multimedia Tools and Applications, 2018, 77 : 29531 - 29549
  • [39] Unsupervised feature selection via adaptive hypergraph regularized latent representation learning
    Ding, Deqiong
    Yang, Xiaogao
    Xia, Fei
    Ma, Tiefeng
    Liu, Haiyun
    Tang, Chang
    Neurocomputing, 2021, 378 : 79 - 97
  • [40] Unsupervised feature selection for balanced clustering
    Zhou, Peng
    Chen, Jiangyong
    Fan, Mingyu
    Du, Liang
    Shen, Yi-Dong
    Li, Xuejun
    KNOWLEDGE-BASED SYSTEMS, 2020, 193