On Surrogate Learning for Linear Stability Assessment of Navier-Stokes Equations with Stochastic Viscosity

被引:1
作者
Sousedik, Bedrich [1 ]
Elman, Howard C. [2 ,3 ]
Lee, Kookjin [4 ]
Price, Randy [5 ,6 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, Iribe Ctr, 8125 Paint Branch Dr, College Pk, MD 20742 USA
[4] Arizona State Univ, Sch Comp & Augmented Intelligence, 699 S Mill Ave, Tempe, AZ 85281 USA
[5] George Mason Univ, Ctr Math & Artificial Intelligence, 4400 Univ Dr,MS 3F2,Exploratory Hall,Room 4102, Fairfax, VA 22030 USA
[6] George Mason Univ, Ctr Computat Fluid Dynam, 4400 Univ Dr,MS 3F2,Exploratory Hall,Room 4102, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network; GALERKIN METHODS; INTEGRATION;
D O I
10.21136/AM.2022.0046-21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.
引用
收藏
页码:727 / 749
页数:23
相关论文
共 38 条
  • [11] Comparison of Gaussian process modeling software
    Erickson, Collin B.
    Ankenman, Bruce E.
    Sanchez, Susan M.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 266 (01) : 179 - 192
  • [12] Foresee FD, 1997, 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, P1930, DOI 10.1109/ICNN.1997.614194
  • [13] Numerical integration using sparse grids
    Gerstner, T
    Griebel, M
    [J]. NUMERICAL ALGORITHMS, 1998, 18 (3-4) : 209 - 232
  • [14] The nonlinear Gaussian spectrum of log-normal stochastic processes and variables
    Ghanem, R
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (04): : 964 - 973
  • [15] Ghanem R. G., 1991, STOCHASTIC FINITE EL
  • [16] Girault V., 1986, FINITE ELEMENT METHO, V5
  • [17] Govaerts W., 2000, Numerical Methods for Bifurcations of Dynamical Equilibria, DOI DOI 10.1137/1.9780898719543
  • [18] Le Maître OP, 2010, SCI COMPUT, P1, DOI 10.1007/978-90-481-3520-2_1
  • [19] A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity
    Lee, Kookjin
    Elman, Howard C.
    Sousedik, Bedrich
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (04): : 1275 - 1300
  • [20] Inexact Methods for Symmetric Stochastic Eigenvalue Problems
    Lee, Kookjin
    Sousedik, Bedrich
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1744 - 1776