On Surrogate Learning for Linear Stability Assessment of Navier-Stokes Equations with Stochastic Viscosity

被引:1
作者
Sousedik, Bedrich [1 ]
Elman, Howard C. [2 ,3 ]
Lee, Kookjin [4 ]
Price, Randy [5 ,6 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, 1000 Hilltop Circle, Baltimore, MD 21250 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, Inst Adv Comp Studies, Iribe Ctr, 8125 Paint Branch Dr, College Pk, MD 20742 USA
[4] Arizona State Univ, Sch Comp & Augmented Intelligence, 699 S Mill Ave, Tempe, AZ 85281 USA
[5] George Mason Univ, Ctr Math & Artificial Intelligence, 4400 Univ Dr,MS 3F2,Exploratory Hall,Room 4102, Fairfax, VA 22030 USA
[6] George Mason Univ, Ctr Computat Fluid Dynam, 4400 Univ Dr,MS 3F2,Exploratory Hall,Room 4102, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network; GALERKIN METHODS; INTEGRATION;
D O I
10.21136/AM.2022.0046-21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.
引用
收藏
页码:727 / 749
页数:23
相关论文
共 38 条
  • [1] Steady solutions of the Navier-Stokes equations by selective frequency damping
    Akervik, Espen
    Brandt, Luca
    Henningson, Dan S.
    Hoepffner, Jerome
    Marxen, Olaf
    Schlatter, Philipp
    [J]. PHYSICS OF FLUIDS, 2006, 18 (06)
  • [2] Andreev R., 2012, LECT NOTES COMPUTATI, V83, P203, DOI [DOI 10.1007/978-3-642-22061-67, DOI 10.1007/978-3-642-22061-6_7]
  • [3] A stochastic collocation method for elliptic partial differential equations with random input data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1005 - 1034
  • [4] A Low-Rank Inexact Newton-Krylov Method for Stochastic Eigenvalue Problems
    Benner, Peter
    Onwunta, Akwum
    Stoll, Martin
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (01) : 5 - 22
  • [5] Cliffe K. A., 2000, Acta Numerica, V9, P39, DOI 10.1017/S0962492900000398
  • [6] EIGENVALUES OF BLOCK MATRICES ARISING FROM PROBLEMS IN FLUID-MECHANICS
    CLIFFE, KA
    GARRATT, TJ
    SPENCE, A
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) : 1310 - 1318
  • [7] Elman H., 2014, FINITE ELEMENTS FAST, DOI [10.1093/acprof:oso/9780199678792.001.0001, DOI 10.1093/ACPROF:OSO/9780199678792.001.0001]
  • [8] COLLOCATION METHODS FOR EXPLORING PERTURBATIONS IN LINEAR STABILITY ANALYSIS
    Elman, Howard C.
    Silvester, David J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04) : A2667 - A2693
  • [9] IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems
    Elman, Howard C.
    Ramage, Alison
    Silvester, David J.
    [J]. SIAM REVIEW, 2014, 56 (02) : 261 - 273
  • [10] LYAPUNOV INVERSE ITERATION FOR IDENTIFYING HOPF BIFURCATIONS IN MODELS OF INCOMPRESSIBLE FLOW
    Elman, Howard C.
    Meerbergen, Karl
    Spence, Alastair
    Wu, Minghao
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03) : A1584 - A1606