Dual Adaptive Pyramid Network for Cross-Stain Histopathology Image Segmentation

被引:16
作者
Hou, Xianxu [1 ,2 ]
Liu, Jingxin [1 ,2 ,3 ]
Xu, Bolei [1 ,2 ]
Liu, Bozhi [1 ,2 ]
Chen, Xin [4 ]
Ilyas, Mohammad [5 ]
Ellis, Ian [5 ]
Garibaldi, Jon [4 ]
Qiu, Guoping [1 ,2 ,4 ]
机构
[1] Shenzhen Univ, Coll Informat Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[3] Histo Pathol Diagnost Ctr, Shanghai, Peoples R China
[4] Univ Nottingham, Sch Comp Sci, Nottingham, England
[5] Univ Nottingham, Sch Med, Nottingham, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
关键词
Gland segmentation; Histopathology; Domain adaptation;
D O I
10.1007/978-3-030-32245-8_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised semantic segmentation normally assumes the test data being in a similar data domain as the training data. However, in practice, the domain mismatch between the training and unseen data could lead to a significant performance drop. Obtaining accurate pixel-wise label for images in different domains is tedious and labor intensive, especially for histopathology images. In this paper, we propose a dual adaptive pyramid network (DAPNet) for histopathological gland segmentation adapting from one stain domain to another. We tackle the domain adaptation problem on two levels: (1) the image-level considers the differences of image color and style; (2) the feature-level addresses the spatial inconsistency between two domains. The two components are implemented as domain classifiers with adversarial training. We evaluate our new approach using two gland segmentation datasets with H&E and DAB-H stains respectively. The extensive experiments and ablation study demonstrate the effectiveness of our approach on the domain adaptive segmentation task. We show that the proposed approach performs favorably against other state-of-the-art methods.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 13 条
[1]   GlandVision: A Novel Polar Space Random Field Model for Glandular Biological Structure Detection [J].
Fu, Hao ;
Qiu, Guoping ;
Ilyas, Muhammad ;
Shu, Jie .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[2]  
He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
[3]  
Hoffman J, 2018, International conference on machine learning, P1989, DOI DOI 10.48550/ARXIV.1711.03213
[4]  
Isola P, 2017, PROC CVPR IEEE, P1125, DOI DOI 10.1109/CVPR.2017.632
[5]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[6]   Least Squares Generative Adversarial Networks [J].
Mao, Xudong ;
Li, Qing ;
Xie, Haoran ;
Lau, Raymond Y. K. ;
Wang, Zhen ;
Smolley, Stephen Paul .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2813-2821
[7]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[8]   Gland segmentation in colon histology images: The glas challenge contest [J].
Sirinukunwattana, Korsuk ;
Pluim, Josien P. W. ;
Chen, Hao ;
Qi, Xiaojuan ;
Heng, Pheng-Ann ;
Guo, Yun Bo ;
Wang, Li Yang ;
Matuszewski, Bogdan J. ;
Bruni, Elia ;
Sanchez, Urko ;
Bohm, Anton ;
Ronneberger, Olaf ;
Cheikh, Bassem Ben ;
Racoceanu, Daniel ;
Kainz, Philipp ;
Pfeiffer, Michael ;
Urschler, Martin ;
Snead, David R. J. ;
Rajpoot, Nasir M. .
MEDICAL IMAGE ANALYSIS, 2017, 35 :489-502
[9]  
Tao Y, 2017, CHIN CONTR CONF, P4288, DOI 10.23919/ChiCC.2017.8028032
[10]   Learning to Adapt Structured Output Space for Semantic Segmentation [J].
Tsai, Yi-Hsuan ;
Hung, Wei-Chih ;
Schulter, Samuel ;
Sohn, Kihyuk ;
Yang, Ming-Hsuan ;
Chandraker, Manmohan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7472-7481