Looking at the skull in a new light: Rayleigh-Lamb waves in cranial bone

被引:0
|
作者
Estrada, Hector [1 ]
Gottschalk, Sven [1 ]
Reiss, Michael [1 ]
Neuschmelting, Volker [2 ]
Rebling, Johannes [1 ]
Goldbrunner, Roland [2 ]
Razansky, Daniel [3 ,4 ]
机构
[1] Helmholtz Ctr Munich, Inst Biol & Med Imaging, Neuherberg, Germany
[2] Univ Hosp Cologne, Dept Neurosurg, Cologne, Germany
[3] Tech Univ Munich, Sch Med, Munich, Germany
[4] Tech Univ Munich, Sch Bioengn, Munich, Germany
基金
欧洲研究理事会;
关键词
Rayleigh Waves; Surface Acoustic Waves; Plate waves; Lamb Waves; Skull Bone; Near Field; Laser ultrasonics; ULTRASOUND; TRANSMISSION; ATTENUATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Current knowledge on the ultrasound wave propagation in the cranial bone is restricted to far-field observations. In order to extend our understanding on how ultrasound waves propagate in the skull, we use short laser pulses to excite ultrasound waves in water-immersed ex vivo mouse and human skulls and explored their near-field. The laser pulses (10 ns duration) of 532 nm are absorbed by a small layer of black burnish deposited on the skull's inner surface and generate ultrasound waves due to the thermoelastic effect. The acoustic near-field is mapped using a needle hydrophone close to the skull surface, following a three-dimensional scanning path derived from a previous pulse-echo scan of the skull with a spherically focused ultrasound transducer. The results for mouse and human skulls show different wave propagation regimes according to their differences in size, thickness, and internal structure. Leaky and non-leaky waves have been observed for both skull samples. Zero order Lamb modes were observed in the mouse skull, whereas Rayleigh-Lamb higher order modes can be observed in the human skull sample, presumably propagating in the outer cortical bone layer. Good agreement is found between the experiments and the multilayered flat plate model.
引用
收藏
页数:3
相关论文
共 32 条
  • [21] Dispersion curves for Rayleigh-Lamb waves in a micro-plate considering strain gradient elasticity
    Sidhardh, Sai
    Ray, M. C.
    WAVE MOTION, 2019, 86 : 91 - 109
  • [22] Reflections and transmissions of the Rayleigh-Lamb waves at the vertical boundary of a compound waveguide at various impedances of contacting media
    Gorodetskaya, N.S.
    2001, Institut mekhaniki NAN Ukrainy (37):
  • [23] Generalized analytical dispersion equations for guided Rayleigh-Lamb (RL) waves and shear horizontal (SH) waves in corrugated waveguides
    Tavaf, Vahid
    Banerjee, Sourav
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 202 : 75 - 86
  • [24] RAYLEIGH-LAMB TYPE WAVES IN A FLUID-SATURATED POROUS STRATUM INSERTED IN AN ELASTIC INFINITE MEDIUM
    KONCZAK, Z
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (04): : T208 - T210
  • [25] Transient scattering of Rayleigh-Lamb waves by a surface-breaking crack. Comparison of numerical simulation and experiment
    Liu, S.W.
    Datta, S.K.
    Ju, T.H.
    Journal of Nondestructive Evaluation, 1991, 10 (03) : 111 - 126
  • [26] Observation of Rayleigh-Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption with the POLA detectors at Ny-Ålesund
    M. Abbrescia
    C. Avanzini
    L. Baldini
    R. Baldini Ferroli
    G. Batignani
    M. Battaglieri
    S. Boi
    E. Bossini
    F. Carnesecchi
    M. Casula
    D. Cavazza
    C. Cicalò
    L. Cifarelli
    F. Coccetti
    E. Coccia
    A. Corvaglia
    D. De Gruttola
    S. De Pasquale
    L. Galante
    M. Garbini
    G. Gemme
    I. Gnesi
    E. Gramstad
    S. Grazzi
    E. S. Haland
    D. Hatzifotiadou
    P. La Rocca
    Z. Liu
    L. Lombardo
    G. Mandaglio
    A. Margotti
    G. Maron
    M. N. Mazziotta
    M. Mazzola
    A. Mulliri
    R. Nania
    F. Noferini
    F. Nozzoli
    F. Ould-Saada
    F. Palmonari
    M. Panareo
    M. P. Panetta
    R. Paoletti
    M. Parvis
    C. Pellegrino
    L. Perasso
    O. Pinazza
    C. Pinto
    S. Pisano
    F. Riggi
    Scientific Reports, 12
  • [27] Rayleigh-Lamb waves in a compound waveguide. Reflection from and transmission through the vertical interface between media with different impedances
    Gorodetskaya, NS
    INTERNATIONAL APPLIED MECHANICS, 2001, 37 (06) : 798 - 804
  • [28] Finite-element analysis of non-collinear mixing of two lowest-order antisymmetric Rayleigh-Lamb waves
    Ishii, Yosuke
    Hiraoka, Koichi
    Adachi, Tadaharu
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (01): : 53 - 68
  • [29] Observation of Rayleigh-Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption with the POLA detectors at Ny-Alesund
    Abbrescia, M.
    Avanzini, C.
    Baldini, L.
    Ferroli, R. Baldini
    Batignani, G.
    Battaglieri, M.
    Boi, S.
    Bossini, E.
    Carnesecchi, F.
    Casula, M.
    Cavazza, D.
    Cicalo, C.
    Cifarelli, L.
    Coccetti, F.
    Coccia, E.
    Corvaglia, A.
    De Gruttola, D.
    De Pasquale, S.
    Galante, L.
    Garbini, M.
    Gemme, G.
    Gnesi, I
    Gramstad, E.
    Grazzi, S.
    Haland, E. S.
    Hatzifotiadou, D.
    La Rocca, P.
    Liu, Z.
    Lombardo, L.
    Mandaglio, G.
    Margotti, A.
    Maron, G.
    Mazziotta, M. N.
    Mazzola, M.
    Mulliri, A.
    Nania, R.
    Noferini, F.
    Nozzoli, F.
    Palmonari, F.
    Panareo, M.
    Panetta, M. P.
    Paoletti, R.
    Parvis, M.
    Pellegrino, C.
    Perasso, L.
    Pinazza, O.
    Pinto, C.
    Pisano, S.
    Riggi, F.
    Righini, G.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [30] Quantitative analysis of the agreement between scalar finite element simulation and pulsed TV-holography detection of the scattering of Rayleigh-Lamb waves in plates
    Carlos Lopez-Vazquez, Jose
    Trillo, Cristina
    Doval, Angel F.
    Fernandez, Jose L.
    Rodriguez-Gomez, Pablo
    SPECKLE 2018: VII INTERNATIONAL CONFERENCE ON SPECKLE METROLOGY, 2018, 10834