Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks

被引:7
|
作者
Altameem, Ayman [1 ]
Mallikarjuna, Basetty [2 ]
Saudagar, Abdul Khader Jilani [3 ]
Sharma, Meenakshi [2 ]
Poonia, Ramesh Chandra [4 ]
机构
[1] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, Riyadh, Saudi Arabia
[2] Galgotias Univ, Sch Comp Sci & Engn, Greater Noida, India
[3] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Informat Syst Dept, Riyadh 11432, Saudi Arabia
[4] CHRIST Deemed Univ, Dept Comp Sci, Bangalore, Karnataka, India
关键词
convolutional neurol networks; deep learning; higher grade gliomas; image segmentation; lower grade gliomas; voxel; SEGMENTATION; FUSION;
D O I
10.1089/cmb.2021.0280
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This article introduces automatic brain tumor detection from a magnetic resonance image (MRI). It provides novel algorithms for extracting patches and segmentation trained with Convolutional Neural Network (CNN)'s to identify brain tumors. Further, this study provides deep learning and image segmentation with CNN algorithms. This contribution proposed two similar segmentation algorithms: one for the Higher Grade Gliomas (HGG) and the other for the Lower Grade Gliomas (LGG) for the brain tumor patients. The proposed algorithms (Intensity normalization, Patch extraction, Selecting the best patch, segmentation of HGG, and Segmentation of LGG) identify the gliomas and detect the stage of the tumor as per taking the MRI as input and segmented tumor from the MRIs and elaborated the four algorithms to detect HGG, and segmentation to detect the LGG works with CNN. The segmentation algorithm is compared with different existing algorithms and performs the automatic identification reasonably with high accuracy as per epochs generated with accuracy and loss curves. This article also described how transfer learning has helped extract the image and resolution of the image and increase the segmentation accuracy in the case of LGG patients.
引用
收藏
页码:530 / 544
页数:15
相关论文
共 50 条
  • [41] Fully Automatic Karyotyping via Deep Convolutional Neural Networks
    Wang, Chengyu
    Yu, Limin
    Su, Jionglong
    Shen, Juming
    Selis, Valerio
    Yang, Chunxiao
    Ma, Fei
    IEEE ACCESS, 2024, 12 : 46081 - 46092
  • [42] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [43] DeepTarget: An Automatic Target Recognition Using Deep Convolutional Neural Networks
    Nasrabadi, Nasser M.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) : 2687 - 2697
  • [44] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Muhammad Ather Iqbal
    Zhijie Wang
    Zain Anwar Ali
    Shazia Riaz
    Wireless Personal Communications, 2021, 116 : 1043 - 1053
  • [45] Brain Tumor Classification Using Pretrained Convolutional Neural Networks
    Daniel, Mihalas Constantin
    Ruxandra, Lascu Mihaela
    2021 16TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2021, : 130 - 133
  • [46] Automatic Fish Species Classification Using Deep Convolutional Neural Networks
    Iqbal, Muhammad Ather
    Wang, Zhijie
    Ali, Zain Anwar
    Riaz, Shazia
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 116 (02) : 1043 - 1053
  • [47] Detection of pneumonia using convolutional neural networks and deep learning
    Szepesi, Patrik
    Szilagyi, Laszlo
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (03) : 1012 - 1022
  • [48] Diabetic Retinopathy Detection using Deep Convolutional Neural Networks
    Doshi, Darshit
    Shenoy, Aniket
    Sidhpura, Deep
    Gharpure, Prachi
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 261 - 266
  • [49] Video Saliency Detection Using Deep Convolutional Neural Networks
    Zhou, Xiaofei
    Liu, Zhi
    Gong, Chen
    Li, Gongyang
    Huang, Mengke
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 308 - 319
  • [50] Android Malware Detection using Convolutional Deep Neural Networks
    Bourebaa, Fatima
    Benmohammed, Mohamed
    2020 4TH INTERNATIONAL CONFERENCE ON ADVANCED ASPECTS OF SOFTWARE ENGINEERING (ICAASE'2020): 4TH INTERNATIONAL CONFERENCE ON ADVANCED ASPECTS OF SOFTWARE ENGINEERING, 2020, : 52 - 58