Space-Charge Layers in All-Solid-State Batteries; Important or Negligible?

被引:155
|
作者
de Klerk, Niek J. J. [1 ]
Wagemaker, Marnix [1 ]
机构
[1] Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg15, NL-2629 JB Delft, Netherlands
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 10期
基金
欧洲研究理事会;
关键词
space-charge; all-solid-state batteries; solid state electrolytes; interface; resistance; capacitance; LITHIUM-ION; INTERFACIAL PHENOMENA; NEUTRON-DIFFRACTION; INTERCALATION; ELECTROLYTE; CONDUCTIVITY; CONDUCTORS; STABILITY; VOLTAGE; LICOO2;
D O I
10.1021/acsaem.8b01141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid state batteries have the promise to increase the safety of Li-ion batteries. A prerequisite for high-performance all-solid-state batteries is a high Li-ion conductivity through the solid electrolyte. In recent decades, several solid electrolytes have been developed which have an ionic conductivity comparable to that of common liquid electrolytes. However, fast charging and discharging of all-solid-state batteries remains challenging. This is generally attributed to poor kinetics over the electrode-solid electrolyte interface because of poorly conducting decomposition products, small contact areas, or space-charge layers. To understand and quantify the role of space-charge layers in all solid -state batteries a simple model is presented which allows to asses the interface capacitance and resistance caused by the space-charge layer. The model is applied to LCO (LiCoO2) and graphite electrodes in contact with an LLZO (Li7La3Zr2O12) and LATP (Li1.2Al0.2Ti1.8(PO4)(3)) solid electrolyte at several voltages. The predictions demonstrate that the space-charge layer for typical electrode electrolyte combinations is about a nanometer in thickness, and the consequential resistance for Li-ion transport through the space-charge layer is negligible, except when layers completely depleted of Li-ions are formed in the solid electrolyte. This suggests that space-charge layers have a negligible impact on the performance of all-solid-state batteries.
引用
收藏
页码:5609 / 5618
页数:19
相关论文
共 50 条
  • [31] All-Solid-State Batteries with Thick Electrode Configurations
    Kato, Yuki
    Shiotani, Shinya
    Morita, Keisuke
    Suzuki, Kota
    Hirayama, Masaaki
    Kanno, Ryoji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03): : 607 - 613
  • [32] Development of materials for all-solid-state lithium batteries
    Machida, N., 2005, Funtai Funamtsu Yakin Kyokai/Japan Soc. of Powder Metallurgy (52):
  • [33] Manganese electrode for all-solid-state fluoride batteries
    Inoishi, Atsushi
    Setoguchi, Naoko
    Motoyama, Megumi
    Okada, Shigeto
    Sakaebe, Hikari
    CHEMICAL COMMUNICATIONS, 2025, 61 (08) : 1645 - 1648
  • [34] Recent advances to all-solid-state lithium batteries
    Foreman, Jonathon
    American Ceramic Society Bulletin, 2024, 103 (08):
  • [35] Favorable composite electrodes for all-solid-state batteries
    Sakuda, Atsushi
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2018, 126 (09) : 675 - 683
  • [36] All-solid-state batteries: an overview for bio applications
    Sousa, R.
    Ribeiro, J. F.
    Sousa, J. A.
    Goncalves, L. M.
    2013 IEEE 3RD PORTUGUESE MEETING IN BIOENGINEERING (ENBENG), 2013,
  • [37] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [38] Benchmarking the performance of all-solid-state lithium batteries
    Randau, Simon
    Weber, Dominik A.
    Koetz, Olaf
    Koerver, Raimund
    Braun, Philipp
    Weber, Andre
    Ivers-Tiffee, Ellen
    Adermann, Torben
    Kulisch, Joern
    Zeier, Wolfgang G.
    Richter, Felix H.
    Janek, Juergen
    NATURE ENERGY, 2020, 5 (03) : 259 - 270
  • [40] Benchmarking the performance of all-solid-state lithium batteries
    Simon Randau
    Dominik A. Weber
    Olaf Kötz
    Raimund Koerver
    Philipp Braun
    André Weber
    Ellen Ivers-Tiffée
    Torben Adermann
    Jörn Kulisch
    Wolfgang G. Zeier
    Felix H. Richter
    Jürgen Janek
    Nature Energy, 2020, 5 : 259 - 270