Kahler-Ricci solitons on compact complex manifolds with C1(M)>0

被引:30
作者
Cao, HD [1 ]
Tian, G
Zhu, XH
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1007/s00039-005-0522-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the relation between the existence of Kahler-Ricci solitons and a certain functional associated to some complex Monge-Ampere equation on compact complex manifolds with positive first Chern class. In particular, we obtain a strong inequality of Moser-Trudinger type on a compact complex manifold admitting a Kahler-Ricci soliton.
引用
收藏
页码:697 / 719
页数:23
相关论文
共 16 条
[2]  
BANDO S, 1987, ADV STUDIES PURE MAT, V10
[3]  
Cao HD, 1997, J DIFFER GEOM, V45, P257
[4]   BILINEAR-FORMS AND EXTREMAL KAHLER VECTOR-FIELDS ASSOCIATED WITH KAHLER CLASSES [J].
FUTAKI, A ;
MABUCHI, T .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :199-210
[5]  
HAMILTON RS, 1995, SURVEYS DIFFERENTIAL, V2, P7
[6]  
Koiso N., 1990, ADV STUDIES PURE MAT, V18-I
[7]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[8]   Multiplier Hermitian structures on Kahler manifolds [J].
Mabuchi, T .
NAGOYA MATHEMATICAL JOURNAL, 2003, 170 :73-115
[9]   Heat kernel estimates and the Green functions on multiplier Hermitian manifolds [J].
Mabuchi, T .
TOHOKU MATHEMATICAL JOURNAL, 2002, 54 (02) :259-275
[10]   A nonlinear inequality of Moser-Trudinger type [J].
Tian, G ;
Zhu, XH .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (04) :349-354