A toxic axenic strain of Alexandrium fundyense is shown to be capable of removing dissolved free amino acids (DFAAs) until concentrations are similar (low nM) to those found in natural waters. Uptake is greatest during exponential growth, rather than during C and/or N-stress as is usual in diatoms and other flagellates. A wide range of amino acids can be taken up, their concentration being decreased within a few hours to the levels observed prior to DFAA addition. The maximum rate of DFAA-N uptake, during early exponential phase, was 0.8 pmol-N cell(-1) h(-1), equivalent to similar or equal to 20% of the total N requirement. More typically, the contribution of DFAA-N was only similar or equal to 5%. However, these uptake rates are not sustainable. It is apparent that this organism cannot use amino-N to support significant growth, even though it can take up DFAAs. This, and the fact that the composition of the internal amino acid pool differed from that externally, is further evidence that the N-physiology of this genus is abnormal (differences to other dinoflagellates include an abnormally high concentration of glutamine and arginine, an effective absence of amine X, and release of nitrite during the concurrent assimilation of nitrate and ammonium in darkness). There is no evidence that the use of DFAAs enhance toxin content, except when cells are supplied with very high (unnatural) concentrations of arginine.