Anomaly Detection in Paleoclimate Records Using Permutation Entropy

被引:31
作者
Garland, Joshua [1 ]
Jones, Tyler R. [2 ]
Neuder, Michael [3 ]
Morris, Valerie [2 ]
White, James W. C. [2 ]
Bradley, Elizabeth [1 ,3 ]
机构
[1] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
[2] Univ Colorado, Inst Arct & Alpine Res, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
来源
ENTROPY | 2018年 / 20卷 / 12期
基金
美国国家科学基金会;
关键词
paleoclimate; permutation entropy; ice core; anomaly detection; CORE WD2014 CHRONOLOGY; WATER ISOTOPES; TIME-SERIES; ICE; COMPLEXITY;
D O I
10.3390/e20120931
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018) revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysisand can even be useful for guiding that analysis.
引用
收藏
页数:16
相关论文
共 36 条
[1]   The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems [J].
Amigó, JM ;
Kennel, MB ;
Kocarev, L .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) :77-95
[2]   The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized [J].
Amigo, Jose M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) :789-793
[3]  
[Anonymous], 1999, TOPOLOGY P
[4]   Statistical Mechanics and Information-Theoretic Perspectives on Complexity in the Earth System [J].
Balasis, Georgios ;
Donner, Reik V. ;
Potirakis, Stelios M. ;
Runge, Jakob ;
Papadimitriou, Constantinos ;
Daglis, Ioannis A. ;
Eftaxias, Konstantinos ;
Kurths, Juergen .
ENTROPY, 2013, 15 (11) :4844-4888
[5]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[6]   Entropy of interval maps via permutations [J].
Bandt, C ;
Keller, G ;
Pompe, B .
NONLINEARITY, 2002, 15 (05) :1595-1602
[7]   A complete representation of uncertainties in layer-counted paleoclimatic archives [J].
Boers, Niklas ;
Goswami, Bedartha ;
Ghil, Michael .
CLIMATE OF THE PAST, 2017, 13 (09) :1169-1190
[8]   Nonlinear time-series analysis revisited [J].
Bradley, Elizabeth ;
Kantz, Holger .
CHAOS, 2015, 25 (09)
[9]   The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 kaBP) and the gas age-ice age difference [J].
Buizert, C. ;
Cuffey, K. M. ;
Severinghaus, J. P. ;
Baggenstos, D. ;
Fudge, T. J. ;
Steig, E. J. ;
Markle, B. R. ;
Winstrup, M. ;
Rhodes, R. H. ;
Brook, E. J. ;
Sowers, T. A. ;
Clow, G. D. ;
Cheng, H. ;
Edwards, R. L. ;
Sigl, M. ;
McConnell, J. R. ;
Taylor, K. C. .
CLIMATE OF THE PAST, 2015, 11 (02) :153-173
[10]  
Cao YH, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046217