Kahler submanifolds with parallel pluri-mean curvature

被引:10
作者
Burstall, FE [1 ]
Eschenburg, JH
Ferreira, MJ
Tribuzy, R
机构
[1] Univ Bath, Dept Math Sci, Bath BA1 7AY, Avon, England
[2] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
[3] Univ Lisbon, CMAF, P-1640003 Lisbon, Portugal
[4] Univ Fed Amazonas, Dept Matemat, ICE, BR-69077000 Manaus, Amazonas, Brazil
关键词
associated family; Gauss map; flag manifolds; pluriharmonicity; isotropy;
D O I
10.1016/S0926-2245(03)00055-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the local geometry of a class of Kahler submanifolds M subset of R-n which generalize surfaces of constant mean curvature. The role of the mean curvature vector is played by the (1, 1)-part (i.e., the dz(i) d(z) over bar (j)-components) of the second fundamental form alpha, which we call the pluri-mean curvature. We show that these Kahler submanifolds are characterized by the existence of an associated family of isometric submanifolds with rotated second fundamental form. Of particular interest is the isotropic case where this associated family is trivial. We also investigate the properties of the corresponding Gauss map which is pluriharmonic. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 13 条
[1]  
AREZZO C, 2001, WEIERSTRASS REPRESEN
[2]  
BURSTALL FE, 1990, LECT NOTES MATH, V1424
[3]  
DAJCZER M, 1985, J DIFFER GEOM, V22, P13
[4]   Associated families of pluriharmonic maps and isotropy [J].
Eschenburg, JH ;
Tribuzy, R .
MANUSCRIPTA MATHEMATICA, 1998, 95 (03) :295-310
[5]   Extrinsic symmetric spaces and orbits of s-representations (vol 88, pg 571, 1995) [J].
Eschenburg, JH ;
Heintze, E .
MANUSCRIPTA MATHEMATICA, 1997, 92 (03) :408-408
[6]   (1,1)-GEODESIC MAPS INTO GRASSMANN MANIFOLDS [J].
ESCHENBURG, JH ;
TRIBUZY, R .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (03) :337-346
[7]  
FERREIRA M, 1993, B SOC MATH BELG, V45, P183
[8]   SYMMETRIC SUB-MANIFOLDS OF EUCLIDEAN-SPACE [J].
FERUS, D .
MATHEMATISCHE ANNALEN, 1980, 247 (01) :81-93
[9]  
OHNITA Y, 1990, P LOND MATH SOC, V61, P546
[10]   THE GAUSS MAP FOR KAHLERIAN SUBMANIFOLDS OF R(N) [J].
RIGOLI, M ;
TRIBUZY, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) :515-528