AN ATOMIC DECOMPOSITION FOR HARDY SPACES ASSOCIATED TO SCHRODINGER OPERATORS

被引:9
作者
Song, Liang [2 ]
Tan, Chaoqiang [1 ]
Yan, Lixin [2 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Hardy space; Schrodinger operator; atom; nontangential maximal function; product spaces; HP; BMO; DUALITY; DOMAINS; VERSION; BOUNDS;
D O I
10.1017/S1446788711001376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = -Delta + V be a Schrodinger operator on R-n where V is a nonnegative function in the space L-loc(1) (R-n) of locally integrable functions on R-n. In this paper we provide an atomic decomposition for the Hardy space H-L(1)(R-n) associated to L in terms of the maximal function characterization. We then adapt our argument to give an atomic decomposition for the Hardy space H-L(1) (R-n X R-n) on product domains.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 27 条
[1]   Hardy spaces and divergence operators on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :148-184
[2]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[3]   New abstract Hardy spaces [J].
Bernicot, Frederic ;
Zhao, Jiman .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (07) :1761-1796
[4]   A CONTINUOUS VERSION OF DUALITY OF H-1 WITH BMO ON THE BIDISC [J].
CHANG, SYA ;
FEFFERMAN, R .
ANNALS OF MATHEMATICS, 1980, 112 (01) :179-201
[5]   THE CALDERON-ZYGMUND DECOMPOSITION ON PRODUCT DOMAINS [J].
CHANG, SYA ;
FEFFERMAN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (03) :455-468
[6]  
CHEEGER J, 1982, J DIFFER GEOM, V17, P15
[7]  
COIFMAN RR, 1974, STUD MATH, V51, P269
[8]  
CORDOBA A, 1975, ANN MATH, V102
[9]   Gaussian heat kernel upper bounds via the Phragmen-Lindelof theorem [J].
Coulhon, Thierry ;
Sikora, Adam .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :507-544
[10]  
Davies E.B., 1989, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics 92, V92, DOI DOI 10.1017/CBO9780511566158