High-Performance Visual Tracking With Extreme Learning Machine Framework

被引:36
作者
Deng, Chenwei [1 ]
Han, Yuqi [1 ]
Zhao, Baojun [1 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Visualization; Target tracking; Support vector machines; Adaptation models; Computational modeling; Extreme learning machine autoencoder (ELM-AE); extreme learning machine (ELM); feature classification; feature learning; online sequential ELM (OS-ELM); robust visual tracking; OBJECT TRACKING;
D O I
10.1109/TCYB.2018.2886580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In real-time applications, a fast and robust visual tracker should generally have the following important properties: 1) feature representation of an object that is not only efficient but also has a good discriminative capability and 2) appearance modeling which can quickly adapt to the variations of foreground and backgrounds. However, most of the existing tracking algorithms cannot achieve satisfactory performance in both of the two aspects. To address this issue, in this paper, we advocate a novel and efficient visual tracker by exploiting the excellent feature learning and classification capabilities of an emerging learning technique, that is, extreme learning machine (ELM). The contributions of the proposed work are as follows: 1) motivated by the simplicity and learning ability of the ELM autoencoder (ELM-AE), an ELM-AE-based feature extraction model is presented, and this model can provide a compact and discriminative representation of the inputs efficiently and 2) due to the fast learning speed of an ELM classifier, an ELM-based appearance model is developed for feature classification, and is able to rapidly distinguish the object of interest from its surroundings. In addition, in order to cope with the visual changes of the target and its backgrounds, the online sequential ELM is used to incrementally update the appearance model. Plenty of experiments on challenging image sequences demonstrate the effectiveness and robustness of the proposed tracker.
引用
收藏
页码:2781 / 2792
页数:12
相关论文
共 50 条
  • [41] Learning Adaptive Target-and-Surrounding Soft Mask for Correlation Filter Based Visual Tracking
    Zhang, Ke
    Wang, Wuwei
    Wang, Jingyu
    Wang, Qi
    Li, Xuelong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) : 3708 - 3721
  • [42] High-Performance Real-Time Human Activity Recognition Using Machine Learning
    Thottempudi, Pardhu
    Acharya, Biswaranjan
    Moreira, Fernando
    MATHEMATICS, 2024, 12 (22)
  • [43] Active Learning for Deep Visual Tracking
    Yuan, Di
    Chang, Xiaojun
    Liu, Qiao
    Yang, Yi
    Wang, Dehua
    Shu, Minglei
    He, Zhenyu
    Shi, Guangming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13284 - 13296
  • [44] An explainable machine learning model to predict and elucidate the compressive behavior of high-performance concrete
    Chakraborty, Debaditya
    Awolusi, Ibukun
    Gutierrez, Lilianna
    RESULTS IN ENGINEERING, 2021, 11
  • [45] High performance visual tracking with circular and structural operators
    Gao, Peng
    Ma, Yipeng
    Song, Ke
    Li, Chao
    Wang, Fei
    Xiao, Liyi
    Zhang, Yan
    KNOWLEDGE-BASED SYSTEMS, 2018, 161 : 240 - 253
  • [46] Human gait analysis for osteoarthritis prediction: a framework of deep learning and kernel extreme learning machine
    Khan, Muhammad Attique
    Kadry, Seifedine
    Parwekar, Pritee
    Damasevicius, Robertas
    Mehmood, Asif
    Khan, Junaid Ali
    Naqvi, Syed Rameez
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 2665 - 2683
  • [47] Retinal Vessel Extraction Framework Using Modified Adaboost Extreme Learning Machine
    Krishna, B. V. Santhosh
    Gnanasekaran, T.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (03): : 855 - 869
  • [48] Performance analysis challenges and framework for high-performance reconfigurable computing
    Koehler, Seth
    Curreri, John
    George, Alan D.
    PARALLEL COMPUTING, 2008, 34 (4-5) : 217 - 230
  • [49] Learning Dynamic Compact Memory Embedding for Deformable Visual Object Tracking
    Yu, Hongtao
    Zhu, Pengfei
    Zhang, Kaihua
    Wang, Yu
    Zhao, Shuai
    Wang, Lei
    Zhang, Tianzhu
    Hu, Qinghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5656 - 5670
  • [50] Learning Feature Channel Weighting for Real-Time Visual Tracking
    Li, Zhetao
    Zhang, Jie
    Li, Yanchun
    Zhu, Jiang
    Long, Saiqin
    Xue, Dengfeng
    Fan, Longfei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2190 - 2200