An inequality on solutions of heat equation

被引:0
|
作者
Byun, DW [1 ]
机构
[1] Inha Univ, Dept Math, Nam Ku, Inchon 402751, South Korea
关键词
heat equation; integral transform; positive matrix; reproducing kernel;
D O I
10.1155/S1025583498000162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let nu(x, t) be the solution of the initial value problem for the n dimensional heat equation. Then, for any a and for any t(0) > 0, an inequality about nu(a, t) and nu(x, t(0)) is obtained.
引用
收藏
页码:269 / 273
页数:5
相关论文
共 50 条
  • [31] EXISTENCE AND CONVEXITY OF SOLUTIONS OF THE FRACTIONAL HEAT EQUATION
    Greco, Antonio
    Iannizzotto, Antonio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) : 2201 - 2226
  • [32] On parabolic convergence of positive solutions of the heat equation
    Sarkar, Jayanta
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (06) : 1409 - 1425
  • [33] Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide
    Kian, Yavar
    Sambou, Diomba
    Soccorsi, Eric
    APPLICABLE ANALYSIS, 2020, 99 (13) : 2210 - 2228
  • [34] NONCLASSICAL POTENTIAL SYMMETRIES AND INVARIANT SOLUTIONS OF HEAT EQUATION
    秦茂昌
    梅凤翔
    许学军
    Applied Mathematics and Mechanics(English Edition), 2006, (02) : 241 - 246
  • [35] Invariant solutions of the two-dimensional heat equation
    Narmanov, O. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2019, 29 (01): : 52 - 60
  • [36] Nonclassical potential symmetries and invariant solutions of heat equation
    Mao-chang Qin
    Feng-xiang Mei
    Xue-jun Xu
    Applied Mathematics and Mechanics, 2006, 27 : 241 - 246
  • [37] Periodic solutions to a heat equation with hysteresis in the source term
    Zheng, Jiashan
    Ke, Yuanyuan
    Wang, Yifu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (02) : 134 - 143
  • [38] On solutions of a discretized heat equation in discrete Clifford analysis
    Baaske, F.
    Bernstein, S.
    De Ridder, H.
    Sommen, F.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (02) : 271 - 295
  • [39] ON HOLOMORPHIC SOLUTIONS OF THE HEAT EQUATION WITH A VOLTERRA OPERATOR COEFFICIENT
    Gefter, Sergey
    Vershynina, Anna
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2007, 13 (04): : 329 - 332
  • [40] Nonclassical potential symmetries and invariant solutions of heat equation
    Qin, MC
    Mei, FX
    Xu, XJ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (02) : 241 - 246