Baseline Architecture of ITER Control System

被引:5
|
作者
Wallander, A. [1 ]
Di Maio, F. [1 ]
Journeaux, J. -Y. [1 ]
Klotz, W. -D. [1 ]
Makijarvi, P. [1 ]
Yonekawa, I. [1 ]
机构
[1] ITER Org, F-13067 St Paul Les Durance, France
关键词
Architecture; control system; EPICS; ITER;
D O I
10.1109/TNS.2011.2154341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.
引用
收藏
页码:1433 / 1438
页数:6
相关论文
共 50 条
  • [31] ATCA Shelf Manager EPICS device support for ITER CODAC Core System
    Santos, Bruno
    Carvalho, Paulo F.
    Rodrigues, A. P.
    Carvalho, Bernardo B.
    Sousa, Jorge
    Batista, Antonio J. N.
    Correia, Miguel
    Combo, Alvaro M.
    Cruz, Nuno
    Correia, Carlos M. B. A.
    Goncalves, Bruno
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 938 - 942
  • [32] Real time command control architecture for an ITER relevant inspection robot in operation on Tore Supra
    Keller, Delphine
    Bayetti, P.
    Bonnemason, J.
    Bruno, V.
    Chambaud, P.
    Friconneau, J. P.
    Gargiulo, L.
    Itchah, M.
    Lamy, S.
    Le, R.
    Measson, Y.
    Perrot, Y.
    Ponsort, D.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) : 1015 - 1019
  • [33] Design architecture of multiagent control system
    Xue, Xiao
    Dai, Dan
    Deng, Quanliang
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 4088 - +
  • [34] THE CONTROL ARCHITECTURE OF THE PRIAMOS MOBILE SYSTEM
    DILLMANN, R
    KREUZIGER, J
    WALLNER, F
    CONTROL ENGINEERING PRACTICE, 1994, 2 (02) : 341 - 346
  • [35] IEC-61850-Based Control System for Power Distribution at ITER
    Nair, Supriya A.
    Hourtoule, Joel
    Gascon, Jose Carlos
    Gulati, Hitesh Kumar
    De la Calle, Rafael
    Lescure, C.
    Singh, Manish
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (03) : 596 - 600
  • [36] ITER plasma control system final design and preparation for first plasma
    Snipes, J. A.
    de Vries, P. C.
    Gribov, Y.
    Henderson, M. A.
    Hunt, R.
    Loarte, A.
    Nunes, I
    Pitts, R. A.
    Sinha, J.
    Zabeo, L.
    Lee, W-R
    Ambrosino, G.
    Cinque, M.
    de Tommasi, G.
    Mattei, M.
    Pironti, A.
    Bremond, S.
    Moreau, P.
    Nouailletas, R.
    Felton, R.
    Rimini, F.
    Humphreys, D.
    Walker, M. L.
    Kavin, A.
    Lamzin, E.
    Mineev, A.
    Khayrutdinov, R.
    Konovalov, S.
    Lukash, V
    Raupp, G.
    Treutterer, W.
    NUCLEAR FUSION, 2021, 61 (10)
  • [37] User requirements and conceptual design of the ITER Electron Cyclotron Control System
    Carannante, Giuseppe
    Cavinato, Mario
    Gandini, Franco
    Granucci, Gustavo
    Henderson, Mark
    Purohit, Dharmesh
    Saibene, Gabriella
    Sartori, Filippo
    Sozzi, Carlo
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 420 - 424
  • [38] Control and operation strategy design of ITER coil power supply system
    Fan, Renjing
    Song, Zhiquan
    Fu, Peng
    Gao, Ge
    Huang, Liansheng
    Chen, Xiaojiao
    He, Shiying
    FUSION ENGINEERING AND DESIGN, 2019, 141 : 15 - 20
  • [39] Assessment of the baseline scenario at q95 ∼ 3 for ITER
    Sips, A. C. C.
    Schweinzer, J.
    Luce, T. C.
    Wolfe, S.
    Urano, H.
    Hobirk, J.
    Ide, S.
    Joffrin, E.
    Kessel, C.
    Kim, S. H.
    Lomas, P.
    Nunes, I
    Puetterich, T.
    Rimini, F.
    Solomon, W. M.
    Stober, J.
    Turco, F.
    de Vries, P. C.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    NUCLEAR FUSION, 2018, 58 (12)
  • [40] Safety Related R&D for the ITER Baseline Design
    Reyes, S.
    Taylor, N.
    Cortes, P.
    Ciattaglia, S.
    Rosanvallon, S.
    Perevezentsev, A.
    Iseli, M.
    Baker, D.
    Elbez-Uzan, J.
    Topilski, L.
    Guden, W.
    Sharpe, P.
    Hayashi, T.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 118 - +