Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete

被引:232
|
作者
Sarker, Prabir Kumar [1 ]
机构
[1] Curtin Univ Technol, Sch Civil & Mech Engn, Perth, WA, Australia
关键词
Bond strength; Geopolymer concrete; Pull-out test; Splitting tensile strength; Steel reinforcement; ENGINEERING PROPERTIES; BARS; PERFORMANCE; COLUMNS; SPLICES;
D O I
10.1617/s11527-010-9683-8
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Geopolymer concrete (GPC) is an emerging construction material that uses a by-product material such as fly ash as a complete substitute for cement. This paper evaluates the bond strength of fly ash based geopolymer concrete with reinforcing steel. Pull-out test in accordance with the ASTM A944 Standard was carried out on 24 geopolymer concrete and 24 ordinary Portland cement (OPC) concrete beam-end specimens, and the bond strengths of the two types of concrete were compared. The compressive strength of geopolymer concrete varied from 25 to 39 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 20 mm and 24 mm diameter 500 MPa steel deformed bars. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. Failure occurred with the splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This is because of the higher splitting tensile strength of geopolymer concrete than of OPC concrete of the same compressive strength. A comparison between the splitting tensile strengths of OPC and geopolymer concrete of compressive strengths ranging from 25 to 89 MPa shows that geopolymer concrete has higher splitting tensile strength than OPC concrete. This suggests that the existing analytical expressions for bond strength of OPC concrete can be conservatively used for calculation of bond strength of geopolymer concrete with reinforcing steel.
引用
收藏
页码:1021 / 1030
页数:10
相关论文
共 50 条
  • [41] Experimental Study on the Structural Response of Reinforced Fly Ash-Based Geopolymer Concrete Members
    Eisa, Ahmed S.
    Sabol, Peter
    Khamis, Kamilia M.
    Attia, Ahmed A.
    INFRASTRUCTURES, 2022, 7 (12)
  • [42] Effect of parameters on the compressive strength of fly ash based geopolymer concrete
    Chithambaram, S. Jeeva
    Kumar, Sanjay
    Prasad, Madan M.
    Adak, Dibyendu
    STRUCTURAL CONCRETE, 2018, 19 (04) : 1202 - 1209
  • [43] Developing an ANN prediction model for compressive strength of fly ash-based geopolymer concrete with experimental investigation
    Verma, Nikhil Kumar
    Meesala, Chakradhara Rao
    Kumar, Shailendra
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14) : 10329 - 10345
  • [44] Strength Enhancement, Ductility, and Confinement Effectiveness Index of Fly Ash-based Geopolymer Concrete Square Columns
    Herwani, Herwani
    Imran, Iswandi
    Budiono, Bambang
    Zulkifli, Ediansjah
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2022, 54 (04):
  • [45] Effect of Ground Granulated Blast Slag and Temperature Curing on the Strength of Fly Ash-based Geopolymer Concrete
    Kumar, Anil
    Rajkishor
    Kumar, Niraj
    Chhotu, Anil Kumar
    Kumar, Bhushan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (02) : 13319 - 13323
  • [46] Prediction of Compressive Strength of Fly Ash-Based Geopolymer Concrete Using Supervised Machine Learning Methods
    Arslan Qayyum Khan
    Muhammad Huzaifa Naveed
    Muhammad Dawood Rasheed
    Pengyong Miao
    Arabian Journal for Science and Engineering, 2024, 49 : 4889 - 4904
  • [47] Developing an ANN prediction model for compressive strength of fly ash-based geopolymer concrete with experimental investigation
    Nikhil Kumar Verma
    Chakradhara Rao Meesala
    Shailendra Kumar
    Neural Computing and Applications, 2023, 35 : 10329 - 10345
  • [48] Machine learning approaches to predict compressive strength of fly ash-based geopolymer concrete: A comprehensive review
    Rathnayaka, Madushan
    Karunasinghe, Dulakshi
    Gunasekara, Chamila
    Wijesundara, Kushan
    Lokuge, Weena
    Law, David W.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 419
  • [49] Practical Prediction Models of Tensile Strength and Reinforcement-Concrete Bond Strength of Low-Calcium Fly Ash Geopolymer Concrete
    Luan, Chenchen
    Wang, Qingyuan
    Yang, Fuhua
    Zhang, Kuanyu
    Utashev, Nodir
    Dai, Jinxin
    Shi, Xiaoshuang
    POLYMERS, 2021, 13 (06)
  • [50] An Experimental Study on Bond Strength of Reinforcing Steel in High-Volume Fly-Ash Concrete
    Looney, Trevor J.
    Arezoumandi, Mahdi
    Volz, Jeffery S.
    Myers, John J.
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2012, 1 (01):