STABILITY OF STEADY STATES AND EXISTENCE OF TRAVELING WAVES FOR A HOST-VECTOR EPIDEMIC

被引:4
作者
Wu, Chufen [1 ,2 ]
Weng, Peixuan [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2011年 / 21卷 / 06期
关键词
Host-vector epidemic; stability; traveling wave; spatiotemporal interaction; GLOBAL ASYMPTOTIC STABILITY; SPATIAL SPREAD; POPULATION-MODEL; DISEASE-MODEL; RABIES; INFECTION; INVASIONS; FRONTS; FOXES;
D O I
10.1142/S0218127411029355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the stability of steady states and establish the existence of traveling waves for a diffusive host-vector epidemic with a nonlocal spatiotemporal interaction. We develop the techniques of contracting-convex-sets, limit argument, singular perturbation and fixed point theorems.
引用
收藏
页码:1667 / 1687
页数:21
相关论文
共 26 条
[1]   Traveling waves of infection in the hantavirus epidemics [J].
Abramson, G ;
Kenkre, VM ;
Yates, TL ;
Parmenter, RR .
BULLETIN OF MATHEMATICAL BIOLOGY, 2003, 65 (03) :519-534
[2]   Stage-structured infection transmission and a spatial epidemic: A model for Lyme disease [J].
Caraco, T ;
Glavanakov, S ;
Chen, G ;
Flaherty, JE ;
Ohsumi, TK ;
Szymanski, BK .
AMERICAN NATURALIST, 2002, 160 (03) :348-359
[3]  
Cooke K.L., 1979, The Rocky Mountain Journal of Mathematics, V9, P31, DOI [DOI 10.1216/RMJ-1979-9-1-31, 10.1216/RMJ-1979-9-1-31]
[4]   The characteristics of epidemics and invasions with thresholds [J].
Cruickshank, I ;
Gurney, WSC ;
Veitch, AR .
THEORETICAL POPULATION BIOLOGY, 1999, 56 (03) :279-292
[5]   Travelling waves and spatial hierarchies in measles epidemics [J].
Grenfell, BT ;
Bjornstad, ON ;
Kappey, J .
NATURE, 2001, 414 (6865) :716-723
[6]  
Haddock J., 1985, TRENDS THEORY PRACTI, P173
[7]  
Hale J.K., 1978, Funkcial. Ekvac., V21, P11
[8]   TRAVELING WAVES FOR A SIMPLE DIFFUSIVE EPIDEMIC MODEL [J].
HOSONO, Y ;
ILYAS, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (07) :935-966
[9]   A SIMPLE-MODEL FOR THE SPATIAL SPREAD AND CONTROL OF RABIES [J].
KALLEN, A ;
ARCURI, P ;
MURRAY, JD .
JOURNAL OF THEORETICAL BIOLOGY, 1985, 116 (03) :377-393
[10]   GLOBAL STABILITY FOR INFINITE DELAY LOTKA-VOLTERRA TYPE SYSTEMS [J].
KUANG, Y ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :221-246