Talbot self-imaging and two-photon interference in ring-core fibers

被引:3
作者
Eriksson, Matias [1 ]
Stickler, Benjamin A. [2 ,3 ]
Kopf, Lea [1 ]
Hiekkamaki, Markus [1 ]
Gumenyuk, Regina [1 ]
Chamorovskiy, Yuri [4 ]
Ramelow, Sven [5 ,6 ]
Fickler, Robert [1 ]
机构
[1] Tampere Univ, Phys Unit, Photon Lab, FIN-33720 Tampere, Finland
[2] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany
[3] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
[4] Russian Acad Sci, Fryazino Branch, Kotelnikov Inst Radio Engn & Elect, Fryazino 141190, Russia
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[6] Humboldt Univ, IRIS Adlershof, D-12489 Berlin, Germany
基金
芬兰科学院;
关键词
DIELECTRIC OPTICAL-FIBER; QUANTUM; CARPETS;
D O I
10.1103/PhysRevA.104.063512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wave propagation on the surface of cylinders exhibits interferometric self-imaging, much like the Talbot effect in the near-field diffraction at periodic gratings. We report the experimental observation of the cylindrical Talbot carpet in weakly guiding ring-core fibers for classical light fields. We further show that the ring-core fiber acts as a higher-order optical beamsplitter for single photons, whose output can be controlled by the relative phase between the input light fields. By also demonstrating high-quality two-photon interference between indistinguishable photons sent into the ring-core fiber, our findings open the door to applications in optical telecommunications as a compact beam multiplexer as well as in quantum information processing tasks as a scalable realization of a linear optical network.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] Baranova N., 1998, TECHNICAL DIGEST SUM, V7, P184
  • [2] Berry M, 2001, PHYS WORLD, V14, P39
  • [3] Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram
    Bolduc, Eliot
    Bent, Nicolas
    Santamato, Enrico
    Karimi, Ebrahim
    Boyd, Robert W.
    [J]. OPTICS LETTERS, 2013, 38 (18) : 3546 - 3549
  • [4] Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons
    Bouchard, Frederic
    Heshami, Khabat
    England, Duncan
    Fickler, Robert
    Boyd, Robert W.
    Englert, Berthold-Georg
    Sanchez-Soto, Luis L.
    Karimi, Ebrahim
    [J]. QUANTUM, 2018, 2
  • [5] High-dimensional quantum gates using full-field spatial modes of photons
    Brandt, Forian
    Hiekkamaki, Markus
    Bouchard, Frederic
    Huber, Marcus
    Fickler, Robert
    [J]. OPTICA, 2020, 7 (02) : 98 - 107
  • [6] Matter-wave interferometer for large molecules -: art. no. 100404
    Brezger, B
    Hackermüller, L
    Uttenthaler, S
    Petschinka, J
    Arndt, M
    Zeilinger, A
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (10) : 4
  • [7] Vector Mode Analysis of Ring-Core Fibers: Design Tools for Spatial Division Multiplexing
    Brunet, Charles
    Ung, Bora
    Belanger, Pierre-Andre
    Messaddeq, Younes
    LaRochelle, Sophie
    Rusch, Leslie Ann
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (23) : 4046 - 4057
  • [8] Universal linear optics
    Carolan, Jacques
    Harrold, Christopher
    Sparrow, Chris
    Martin-Lopez, Enrique
    Russell, Nicholas J.
    Silverstone, Joshua W.
    Shadbolt, Peter J.
    Matsuda, Nobuyuki
    Oguma, Manabu
    Itoh, Mikitaka
    Marshall, Graham D.
    Thompson, Mark G.
    Matthews, Jonathan C. F.
    Hashimoto, Toshikazu
    O'Brien, Jeremy L.
    Laing, Anthony
    [J]. SCIENCE, 2015, 349 (6249) : 711 - 716
  • [9] Realization of optical carpets in the Talbot and Talbot-Lau configurations
    Case, William B.
    Tomandl, Mathias
    Deachapunya, Sarayut
    Arndt, Markus
    [J]. OPTICS EXPRESS, 2009, 17 (23): : 20966 - 20974
  • [10] NEAR-FIELD IMAGING OF ATOM DIFFRACTION GRATINGS - THE ATOMIC TALBOT EFFECT
    CHAPMAN, MS
    EKSTROM, CR
    HAMMOND, TD
    SCHMIEDMAYER, J
    TANNIAN, BE
    WEHINGER, S
    PRITCHARD, DE
    [J]. PHYSICAL REVIEW A, 1995, 51 (01): : R14 - R17