Special identity for Novikov-Jordan algebras

被引:5
作者
Dzhumadil'daev, A [1 ]
机构
[1] Math Inst, Alma Ata, Kazakhstan
关键词
Jordan algebras; left-symmetric algebras; Lie algebras; Novikov algebras; q-commutators; special identities;
D O I
10.1081/AGB-200060504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative algebra with the identity (a * b) * (c * d) - (a * d) * (c * b) = (a, b, c) * d - (a, d, e) * b is called Novikov-Jordan. Example: K[x] under multiplication a * b = partial derivative(ab) is Novikor-Jordan. A special identity for Novikov-Jordan algebras of degree 5 is constructed. Free Novikov-Jordan algebras with q generators are exceptional for any q >= 1.
引用
收藏
页码:1279 / 1287
页数:9
相关论文
共 50 条
  • [41] JORDAN ALGEBRAS OF SYMMETRIC MATRICES
    Bik, A.
    Eisenmann, H.
    Sturmfels, B.
    MATEMATICHE, 2021, 76 (02): : 337 - 353
  • [42] Scorza varieties and Jordan algebras
    Chaput, PE
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (02): : 169 - 182
  • [43] On a ternary generalization of Jordan algebras
    Kaygorodov, Ivan
    Pozhidaev, Alexander
    Saraiva, Paulo
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (06) : 1074 - 1102
  • [44] Local orders in Jordan algebras
    Montaner, Fernando
    Paniello, Irene
    JOURNAL OF ALGEBRA, 2017, 485 : 45 - 76
  • [45] Jordan Gradings on Associative Algebras
    Yuri Bahturin
    Matej Brešar
    Ivan Shestakov
    Algebras and Representation Theory, 2011, 14 : 113 - 129
  • [46] ON SEMITRANSITIVE JORDAN ALGEBRAS OF MATRICES
    Bernik, J.
    Drnovsek, R.
    Bukovsek, D. Kokol
    Kosir, T.
    Omladic, M.
    Radjavi, H.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (02) : 319 - 333
  • [47] Spectral conditions on Lie and Jordan algebras of compact operators
    Kennedy, Matthew
    Radjavi, Heydar
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (10) : 3143 - 3157
  • [48] N-point Virasoro Algebras Considered as Krichever-Novikov Type Algebras
    Schlichenmaier, Martin
    GEOMETRIC METHODS IN PHYSICS, 2016, : 295 - 308
  • [49] N-point Virasoro algebras are multipoint Krichever-Novikov-type algebras
    Schlichenmaier, Martin
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (02) : 776 - 821
  • [50] Anti-pre-Lie algebras, Novikov algebras and commutative 2-co cycles on Lie algebras
    Liu, Guilai
    Bai, Chengming
    JOURNAL OF ALGEBRA, 2022, 609 : 337 - 379