Special identity for Novikov-Jordan algebras

被引:5
作者
Dzhumadil'daev, A [1 ]
机构
[1] Math Inst, Alma Ata, Kazakhstan
关键词
Jordan algebras; left-symmetric algebras; Lie algebras; Novikov algebras; q-commutators; special identities;
D O I
10.1081/AGB-200060504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative algebra with the identity (a * b) * (c * d) - (a * d) * (c * b) = (a, b, c) * d - (a, d, e) * b is called Novikov-Jordan. Example: K[x] under multiplication a * b = partial derivative(ab) is Novikor-Jordan. A special identity for Novikov-Jordan algebras of degree 5 is constructed. Free Novikov-Jordan algebras with q generators are exceptional for any q >= 1.
引用
收藏
页码:1279 / 1287
页数:9
相关论文
共 13 条
[1]   A THEORY OF POWER-ASSOCIATIVE COMMUTATIVE ALGEBRAS [J].
ALBERT, AA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 69 (NOV) :503-527
[2]  
[Anonymous], 1956, MAT SB
[3]  
BALINSKII AA, 1985, DOKL AKAD NAUK SSSR+, V283, P1036
[4]  
CAYLEY A, 1891, MATH PAPERS, V3, P242
[5]  
Cayley A, 1857, PHILOS MAG, V13, P19, DOI [10.1080/14786445708642238, DOI 10.1080/14786445708642238]
[6]   Novikov-Jordan algebras [J].
Dzhumadil'daev, A .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) :5207-5240
[7]  
Gel'fand I., 1979, FUNCT ANAL APPL, V13, P13, DOI 10.1007/BF01078363
[9]  
JACOBSON N, 1968, AMS COLL PUBL, V39
[10]  
Koszul J-L., 1961, B SOC MATH FRANCE, V89, P515, DOI [10.24033/bsmf.1572, DOI 10.24033/BSMF.1572]