An nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations

被引:74
|
作者
Zayats, M
Pogorelova, SP
Kharitonov, AB
Lioubashevski, O
Katz, E
Willner, I [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Farkas Ctr Light Induced Proc, IL-91904 Jerusalem, Israel
关键词
bioelectrocatalysis; biosensors; gold nanoparticles; NAD(+)/NADH cofactors; surface plasmon resonance;
D O I
10.1002/chem.200305104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-(3-Aminopropyl)-N'methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized An nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1 x 10(-4) m to 2 x 10(-3) m. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1 x 10(-4) M to 1 x 10(-3) M.
引用
收藏
页码:6108 / 6114
页数:7
相关论文
共 50 条
  • [31] Surface-enhanced plasmon resonance detection of nanoparticle-conjugated DNA hybridization
    Moon, Seyoung
    Kim, Dong Jun
    Kim, Kyujung
    Kim, Donghyun
    Lee, Hosub
    Lee, Kangtaek
    Haam, Seungjoo
    APPLIED OPTICS, 2010, 49 (03) : 484 - 491
  • [32] Surface plasmon resonance prism coupler for enhanced circular dichrosim/birefringence sensing
    Quoc-Hung Phan
    Yu-Lung Lo
    OPTICAL SENSORS 2017, 2017, 10231
  • [33] Nanoparticle-amplified surface plasmon resonance study of protein conformational change at interface
    Wang, Fuan
    Wang, Jianlong
    Liu, Xiaoqing
    Dong, Shaojun
    TALANTA, 2008, 77 (02) : 628 - 634
  • [34] A surface plasmon resonance sensing method that can improve sensitivity
    Liu Jin
    Yang Haima
    Zeng Guohui
    Liu Haishan
    OPTIK, 2017, 145 : 309 - 315
  • [35] Handheld Nanohole Array Surface Plasmon Resonance Sensing Platform
    Campbell, J.
    Escobedo, C.
    Choudhury, A. I. K.
    Blakely, J. T.
    Brolo, A. G.
    Sinton, D.
    Gordon, R.
    PHOTONICS NORTH 2010, 2010, 7750
  • [36] Surface plasmon resonance of gold nanoparticle aggregates induced by halide ions
    Catanzaro, Lucrezia
    Scardaci, Vittorio
    Scuderi, Mario
    Condorelli, Marcello
    D'urso, Luisa
    Compagnini, Giuseppe
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 308
  • [37] Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples
    Nguyen Hoang Ly
    Joo, Sang-Woo
    SENSORS, 2015, 15 (05): : 10088 - 10099
  • [38] Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing
    Chen, Haiping Matthew
    Pang, Lin
    Kher, Aditya
    Fainman, Yeshaiahu
    APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [39] Two-dimensional material-enhanced surface plasmon resonance for antibiotic sensing
    Tan, Jisui
    Chen, Yangyang
    He, Jing
    Occhipinti, Luigi G.
    Wang, Zhanhui
    Zhou, Xiaohong
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 455
  • [40] Enhanced Biosensing Activity of Bimetallic Surface Plasmon Resonance Sensor
    Kashyap, Ritayan
    Chakraborty, Soumik
    Zeng, Shuwen
    Swarnakar, Sikha
    Kaur, Simran
    Doley, Robin
    Mondal, Biplob
    PHOTONICS, 2019, 6 (04)