An nanoparticle-enhanced surface plasmon resonance sensing of biocatalytic transformations

被引:74
|
作者
Zayats, M
Pogorelova, SP
Kharitonov, AB
Lioubashevski, O
Katz, E
Willner, I [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Farkas Ctr Light Induced Proc, IL-91904 Jerusalem, Israel
关键词
bioelectrocatalysis; biosensors; gold nanoparticles; NAD(+)/NADH cofactors; surface plasmon resonance;
D O I
10.1002/chem.200305104
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
N-(3-Aminopropyl)-N'methyl-4,4'-bipyridinium is coupled to tiopronin-capped Au nanoparticles (diameter ca. 2nm) to yield methyl(aminopropyl)viologen-functionalized Au nanoparticles (MPAV(2+)-Au nanoparticles). In situ electrochemical surface plasmon resonance (SPR) measurements are used to follow the electrochemical deposition of the bipyridinium radical cation modified Au nanoparticles on an Au-coated glass surface and the reoxidation and dissolution of the bipyridinium radical cation film. The MPAV(2+)-functionalized An nanoparticles are also employed for the amplified SPR detection of NAD(+) and NADH cofactors. By SPR monitoring the partial biocatalyzed dissolution of the bipyridinium radical cation film in the presence of diaphorase (DP) NAD(+) is detected in the concentration range of 1 x 10(-4) m to 2 x 10(-3) m. Similarly, the diaphorase-mediated formation of the bipyridinium radical cation film on the Au-coated glass surface by the reduction of the MPAV(2+)-functionalized Au nanoparticles by NADH is used for the amplified SPR detection of NADH in the concentration range of 1 x 10(-4) M to 1 x 10(-3) M.
引用
收藏
页码:6108 / 6114
页数:7
相关论文
共 50 条
  • [21] Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection
    Jia, Boliang
    Chen, Jiajie
    Zhou, Jie
    Zeng, Youjun
    Ho, Ho-Pui
    Shao, Yonghong
    NANO RESEARCH, 2022, 15 (09) : 8367 - 8388
  • [22] Noble metal nanoparticle surface plasmon resonance in absorbing medium
    Aghlara, H.
    Rostami, R.
    Maghoul, Amir
    SalmanOgli, Ahmad
    OPTIK, 2015, 126 (04): : 417 - 420
  • [23] Surface plasmon resonance sensing structure
    Lourenco, Paulo
    Fantoni, Alessandro
    Louro, Paula
    Costa, Joao
    Vieira, Manuela
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVIII, 2020, 11274
  • [24] A novel approach to surface plasmon resonance multichannel sensing
    Homola, J
    Dostálek, J
    Ctyroky, J
    OPTICAL ENGINEERING FOR SENSING AND NANOTECHNOLOGY (ICOSN 2001), 2001, 4416 : 86 - 89
  • [25] Enhanced refractive index sensing using a surface plasmon resonance sensor with heterostructure
    Kumar, Rajeev
    Agarwal, Sajal
    Pal, Sarika
    Prajapati, Yogendra Kumar
    Saini, J. P.
    MICRO AND NANOSTRUCTURES, 2023, 183
  • [26] Shell-Isolated Nanoparticle-Enhanced Electrochemiluminescence
    Lin, Long-Hui
    Wang, Jing-Yu
    You, Chao-Yu
    Qiu, Ling-Hang
    Lin, Jia-Sheng
    Zhang, Fan-Li
    Yang, Zhi-Lin
    Zhang, Yue-Jiao
    Chen, Xi
    Li, Jian-Feng
    SMALL, 2022, 18 (39)
  • [27] ZnO-Silicon Enhanced Surface Plasmon Resonance Sensor for Chemical Sensing
    Karki, Bhishma
    Pal, Amrindra
    Sarkar, Partha
    Yadav, Ram Bharos
    Muduli, Arjuna
    Trabelsi, Youssef
    SILICON, 2024, 16 (09) : 3861 - 3872
  • [28] Cavity-enhanced surface-plasmon resonance sensing: modeling and performance
    Giorgini, A.
    Avino, S.
    Malara, P.
    Zullo, R.
    Gagliardi, G.
    Homola, J.
    De Natale, P.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (01)
  • [29] Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody
    Kabiraz, Dulal C.
    Morita, Kinichi
    Sakamoto, Kazuhira
    Kawaguchi, Toshikazu
    TALANTA, 2017, 172 : 1 - 7
  • [30] Gold nanoparticle enhanced multiplexed biosensing on a fiber optic surface plasmon resonance probe
    Qu, Jia-Huan
    Peeters, Bernd
    Delport, Filip
    Vanhoorelbeke, Karen
    Lammertyn, Jeroen
    Spasic, Dragana
    BIOSENSORS & BIOELECTRONICS, 2021, 192