Nonlinear model predictive control for thermal balance in solar trough plants

被引:9
|
作者
Gallego, Antonio J. [1 ]
Sanchez, Adolfo J. [2 ]
Escano, J. M. [1 ]
Camacho, Eduardo F. [1 ]
机构
[1] Univ Seville, Dept Ingeniena Sistemas & Automat, Camino Descubrimientos s-n, Seville 41092, Spain
[2] Munster Technol Univ, Dept Mech Biomed & Mfg Engn, Cork T12 P928, Ireland
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Solar energy; Hydraulic model; Non-linear optimization algorithm; Thermal balance; POWER;
D O I
10.1016/j.ejcon.2022.100717
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The size of existing commercial solar trough plants poses new challenges in applying advanced control strategies to optimize operation. One of these challenges is to obtain a better thermal balance of the loops' temperature. Since plants are made up of many loops, the efficiency of the loops can vary substantially if a group has been cleaned or affected by dust. This leads to the need to defocus the collectors of the most efficient loops to avoid overheating problems, thus producing energy losses. In order to minimize these energy losses, the input valves have to be manipulated to reduce the temperature difference of the loops. However, when the pipes connecting the loops are very long, the pressure drop and energy losses in those pipes become notorious, affecting the flow distribution. The need to consider the hydraulic model becomes very important. In this paper, a non-linear model predictive algorithm is presented that uses a hydraulic model of the solar field to compute the aperture of the input valves. The results show that when the length of the pipes is increased, the algorithm proposed in this paper obtains better results than other algorithms proposed in the literature. (c) 2022 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Application of model predictive control to parabolic trough thermal solar plants
    Len, Antonio J. Gallego
    del Pozo, Adolfo J. Sanchez
    Camacho, Eduardo F.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2022, 19 (03): : 309 - 317
  • [2] Application of model predictive control to parabolic trough thermal solar plants
    Gallego Len A.J.
    Sánchez del Pozo A.J.
    Camacho E.F.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2022, 19 (03): : 309 - 317
  • [3] Model Predictive Control In Solar Trough Plants: A Review
    Camacho, Eduardo F.
    Gallego, Antonio J.
    IFAC PAPERSONLINE, 2015, 48 (23): : 278 - 285
  • [4] Model Predictive Control of the Mojave solar trough plants
    Gallego, Antonio J.
    Macias, Manuel
    de Castilla, Fernando
    Sanchez, Adolfo J.
    Camacho, Eduardo F.
    CONTROL ENGINEERING PRACTICE, 2022, 123
  • [5] Centralized and distributed Model Predictive Control for the maximization of the thermal power of solar parabolic-trough plants
    Frejo, Jose Ramon D.
    Camacho, Eduardo F.
    SOLAR ENERGY, 2020, 204 : 190 - 199
  • [6] Clustering-based model predictive control of solar parabolic trough plants
    Chanfreut, Paula
    Maestre, Jose M.
    Gallego, Antonio
    Annaswamy, Anuradha M.
    Camacho, Eduardo F.
    RENEWABLE ENERGY, 2023, 216
  • [7] A light clustering model predictive control approach to maximize thermal power in solar parabolic-trough plants
    Masero, Eva
    Frejo, Jose Ramon D.
    Maestre, Jose M.
    Camacho, Eduardo F.
    SOLAR ENERGY, 2021, 214 : 531 - 541
  • [8] Model predictive control based on deep learning for solar parabolic-trough plants
    Ruiz-Moreno, Sara
    Frejo, Jose Ramon D.
    Camacho, Eduardo F.
    RENEWABLE ENERGY, 2021, 180 : 193 - 202
  • [9] Nonlinear Model Predictive Control applied to Concentrated Solar Power Plants
    Dettmer, Ramon Jesuino
    Mendes, Paulo Renato da Costa
    Normey-Rico, Julio Elias
    IFAC PAPERSONLINE, 2020, 53 (02): : 12745 - 12750
  • [10] Population-Dynamics-Assisted Coalitional Model Predictive Control for Parabolic-Trough Solar Plants
    Sanchez-Amores, Ana
    Martinez-Piazuelo, Juan
    Maestre, Jose M.
    Ocampo-Martinez, Carlos
    Camacho, Eduardo F.
    Quijano, Nicanor
    IFAC PAPERSONLINE, 2023, 56 (02): : 7710 - 7715