ON THE INEQUALITY OF DIFFERENT METRICS FOR MULTIPLE FOURIER-HAAR SERIES

被引:4
|
作者
Bashirova, A. N. [1 ]
Nursultanov, E. D. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Kazakhstan Branch, 11 Kazhymukan Munaitpasov St, Nur Sultan 010010, Kazakhstan
[2] LN Gumilyov Eurasian Natl Univ, Fac Mech & Math, 13 Kazhymukan Munaitpasov St, Nur Sultan 010008, Kazakhstan
来源
EURASIAN MATHEMATICAL JOURNAL | 2021年 / 12卷 / 03期
关键词
Fourier series; Haar system; inequality of different metrics; anisotropic Lebesgue and Lorentz spaces; LIZORKIN THEOREM; INTERPOLATION; CONVOLUTIONS;
D O I
10.32523/2077-9879-2021-12-3-90-93
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 1 < p < q < infinity, f is an element of L-p[0, 1]. Then, according to the inequality of different metrics due to S.M. Nikol'skii, for the sequence of norms of partial sums of the Fourier-Haar series {parallel to S-2k (f)parallel to(Lq)}(k=0)(infinity) the following relation is true parallel to S-2k (f)parallel to(Lq) = O (2(k(1/p-1/q))) . In this paper, we study the asymptotic behavior of partial sums in the Lorentz spaces. In particular, it is obtained that parallel to S-2k1 2k2 (f)parallel to(Lq) = o (2(k1(1/p1-1/q1))(+)(k2(1/p2-1/q2))) for f is an element of L (p) over bar (,)(tau) over bar [0, 1](2).
引用
收藏
页码:90 / 93
页数:4
相关论文
共 50 条
  • [31] On one generalized translation and the corresponding inequality of different metrics
    Arestov, V. V.
    Deikalova, M., V
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (04): : 40 - 53
  • [32] On Absolute Convergence of Multiple Fourier Series
    Gogoladze, L. D.
    Tsagareishvili, V. Sh.
    RUSSIAN MATHEMATICS, 2015, 59 (09) : 9 - 17
  • [33] The multipliers of multiple trigonometric Fourier series
    Ydyrys, Aizhan
    Sarybekova, Lyazzat
    Tleukhanova, Nazerke
    OPEN ENGINEERING, 2016, 6 (01): : 367 - 371
  • [34] On One Generalized Translation and the Corresponding Inequality of Different Metrics
    V. V. Arestov
    M. V. Deikalova
    Proceedings of the Steklov Institute of Mathematics, 2022, 319 : S30 - S42
  • [35] On One Generalized Translation and the Corresponding Inequality of Different Metrics
    Arestov, V. V.
    Deikalova, M. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 319 (SUPPL 1) : S30 - S42
  • [36] Absolute convergence of multiple Fourier series revisited
    Moricz, Ferenc
    Veres, Antal
    ANALYSIS MATHEMATICA, 2008, 34 (02) : 145 - 162
  • [37] Absolute convergence of multiple Fourier series revisitedВозврашаясь к абсолютной сходимости кратных рядов Фурье
    Ferenc Móricz
    Antal Veres
    Analysis Mathematica, 2008, 34
  • [38] Strong spherical means of multiple Fourier series
    Kuznetsova, O. I.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (04): : 219 - 229
  • [39] Strong spherical means of multiple Fourier series
    O. I. Kuznetsova
    Journal of Contemporary Mathematical Analysis, 2009, 44 : 219 - 229
  • [40] The Littlewood-Paley theory for multiple fourier series
    Skriganov M.M.
    Journal of Mathematical Sciences, 1998, 89 (1) : 1021 - 1030