Parameter estimation for chaotic systems with and without noise using differential evolution-based method

被引:14
|
作者
Li Nian-Qiang [1 ]
Pan Wei [1 ]
Yan Lian-Shan [1 ]
Luo Bin [1 ]
Xu Ming-Feng [1 ]
Jiang Ning [1 ]
机构
[1] SW Jiaotong Univ, Ctr Informat Photon & Commun, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
chaotic system; differential evolution; noise; parameter estimation; PARTICLE SWARM OPTIMIZATION; SEMICONDUCTOR-LASER; OPTICAL FEEDBACK; TIME-SERIES; SYNCHRONIZATION; IDENTIFICATION; ALGORITHM;
D O I
10.1088/1674-1056/20/6/060502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey-Glass system and the Lorenz system are also presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization
    Chen, Shaolong
    Yan, Renhuan
    INFRARED TECHNOLOGY AND APPLICATIONS, AND ROBOT SENSING AND ADVANCED CONTROL, 2016, 10157
  • [32] Parameter and state estimation of experimental chaotic systems using synchronization
    Quinn, John C.
    Bryant, Paul H.
    Creveling, Daniel R.
    Klein, Sallee R.
    Abarbanel, Henry D. I.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [33] Adaptive historical population-based differential evolution for PEM fuel cell parameter estimation
    Aljaidi, Mohammad
    Jangir, Pradeep
    Agrawal, Sunilkumar P.
    Pandya, Sundaram B.
    Parmar, Anil
    Anbarkhan, Samar Hussni
    Abualigah, Laith
    IONICS, 2025, 31 (01) : 641 - 674
  • [34] An Improved Biogeography Based Optimization for Parameter Estimation of Chaotic Systems
    Wang, Jianan
    Li, Xiangtao
    Su, Zhongming
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (09) : 2192 - 2200
  • [35] Parameter estimation of chaotic systems by a nonlinear time-varying evolution PSO method
    Ko C.-N.
    Fu Y.-Y.
    Lee C.-M.
    Wu C.-J.
    Artificial Life and Robotics, 2010, 15 (1) : 33 - 36
  • [36] A Parameter Estimation Method for Biological Systems Modelled by ODE/DDE Models Using Spline Approximation and Differential Evolution Algorithm
    Zhan, Choujun
    Situ, Wuchao
    Yeung, Lam Fat
    Tsang, Peter Wai-Ming
    Yang, Genke
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (06) : 1066 - 1076
  • [37] Differential evolution with dynamic control factors for parameter estimation of photovoltaic models
    Parida, Shubhranshu Mohan
    Rout, Pravat Kumar
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 330 - 343
  • [38] Parameter identification of fractional-order chaotic systems without or with noise: Reply to comments
    Yuan, Liguo
    Yang, Qigui
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 506 - 516
  • [39] Cost function based on the self-organizing map for parameter estimation of chaotic discrete-time systems
    Mousazadeh, Ali
    Shekofteh, Yasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 94 (94)
  • [40] A Novel Parameter Estimation Method for PMSM by Using Chaotic Particle Swarm Optimization With Dynamic Self-Optimization
    Feng, Wan
    Zhang, Wenjuan
    Huang, Shoudao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (07) : 8424 - 8432