THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS

被引:11
作者
Bonnard, Bernard [1 ]
Shcherbakova, Nataliya [1 ]
Sugny, Dominique [2 ]
机构
[1] Inst Math Bourgogne, UMR CNRS 5584, F-21078 Dijon, France
[2] Inst Carnot Bourgogne, UMR CNRS 5209, F-21078 Dijon, France
关键词
Optimal control; smooth continuation method; quantum control; TIME; TRAJECTORIES;
D O I
10.1051/cocv/2010004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system is depending upon three physical parameters, which can be used as homotopy parameters, and the time-minimizing trajectory for a prescribed couple of extremities can be analyzed by making a deformation of the Grushin metric on a two-sphere of revolution.
引用
收藏
页码:267 / 292
页数:26
相关论文
共 29 条
[1]  
Agrachev A. A., 2004, Control Theory and Optimization, V87
[2]  
[Anonymous], 2003, SIAM CLASSICS APPL M
[3]  
[Anonymous], 2008, APPL MATH NONLINEAR
[4]  
Bao D, 2004, J DIFFER GEOM, V66, P377
[5]  
BLISS A, 1946, LECT CALCULUS VARIAT
[6]   THEORY OF SINGULARITIES OF INPUT-OUTPUT APPLICATION AND OPTIMALITY OF SINGULAR TRAJECTORIES IN THE OPTIMAL-TIME PROBLEM [J].
BONNARD, B ;
KUPKA, I .
FORUM MATHEMATICUM, 1993, 5 (02) :111-159
[7]  
BONNARD B, CONTROL CYB IN PRESS
[8]  
BONNARD B, 2006, TAMING HETEROGENEITY, P73
[9]  
BONNARD B, J MATH PHYS IN PRESS
[10]  
Bonnard B., 2005, Mecanique celeste et controle des vehicules spatiaux