Experimental investigation and optimization of pulse electrodeposition parameters for Ni-TiO2 coating on Inconel 617 using TOPSIS technique

被引:6
作者
Joshua, D. R. [1 ]
Jegan, A. [2 ]
机构
[1] AVS Engn Coll, Dept Mech Engn, Salem 636003, Tamil Nadu, India
[2] Sona Coll Technol, Dept Mech Engn, Salem 636005, Tamil Nadu, India
来源
JOURNAL OF CERAMIC PROCESSING RESEARCH | 2022年 / 23卷 / 01期
关键词
Inconel; 617; Ni-TiO2; Coating; Pulse Electrodeposition; Surface roughness; Hardness and TOPSIS; COMPOSITE COATINGS; PERFORMANCE-CHARACTERISTICS; CORROSION-RESISTANCE; SURFACE-ROUGHNESS; BASE SUPERALLOY; TOOL WEAR; OXIDATION; BEHAVIOR; TAGUCHI; ALLOY;
D O I
10.36410/jcpr.2022.23.1.69
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The quality of nano coating and its strength are purely influenced by deposition parameters. Pulse electrodeposition is a promising technique for material coating. Inconel 617 is a widely used alloy in high temperature and aerospace applications. Considering wide range of its applications, study of micro hardness and surface roughness of Inconel 617 is essential. This research deals with optimization of coating parameters in pulse electrodeposition of Ni-TiO2 on Inconel 617. Both, single and multi-objective optimization techniques are selected, with input design of L9 orthogonal array. Pulse frequency, duty cycle and current density are the input parameters. Micro hardness and surface roughness were determined from Coated Inconel 617. TOPSIS technique is adopted to improve micro hardness and surface roughness. Based on the experimental results, Micro hardness of 474 Hv and surface roughness of 0.412 mu m are achieved with remarkable improvement in closeness coefficient value from 0.4475 to 0.913. SEM analysis is carried out to ensure the surface quality. Moreover EDAX and XRD test to identify the presence of coating material.
引用
收藏
页码:69 / 78
页数:10
相关论文
共 43 条
[1]   Electrodeposited nanocomposite coatings for fuel cell application [J].
Aal, A. Abdel ;
Hassan, H. B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) :652-656
[2]   Ni-TiO2 nanocomposite coating with high resistance to corrosion and wear [J].
Baghery, P. ;
Farzam, M. ;
Mousavi, A. B. ;
Hosseini, M. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (23) :3804-3810
[3]   Preparation and Characterization of Ni-TiO2 Nanocomposite Coatings Produced by Electrodeposition Technique [J].
Birlik, Isil ;
Azem, N. Funda Ak ;
Toparli, Mustafa ;
Celik, Erdal ;
Delice, Tulay Koc ;
Yildirim, Sidika ;
Bardakcioglu, Onur ;
Dikici, Tuncay .
FRONTIERS IN MATERIALS, 2016, 3
[4]   Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni-Al2O3 composite coatings [J].
Chen, Li ;
Wang, Liping ;
Zeng, Zhixiang ;
Xu, Tao .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (3-4) :599-605
[5]   Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings [J].
Chen, Weiwei ;
He, Yedong ;
Gao, Wei .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (15) :2487-2492
[6]  
Cho H, 2007, J CERAM PROCESS RES, V8, P453
[7]   Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys [J].
El-Awadi, G. A. ;
Abdel-Samad, S. ;
Elshazly, Ezzat S. .
APPLIED SURFACE SCIENCE, 2016, 378 :224-230
[8]  
Encinas-Oropesa A., 2008, MINERALS METALS MAT, P609
[9]   Influence of pulse electrodeposition parameters on microhardness, grain size and surface morphology of Ni-Co/SiO2 nanocomposite coating [J].
Ghazanlou, Siavash Imanian ;
Shokuhfar, Ali ;
Navazani, Shiva ;
Yavari, Rezvan .
BULLETIN OF MATERIALS SCIENCE, 2016, 39 (05) :1185-1195
[10]  
Huai XG, 2009, J CERAM PROCESS RES, V10, P618