Embedding Overhead Scaling of Optimization Problems in Quantum Annealing

被引:25
作者
Koenz, Mario S. [1 ]
Lechner, Wolfgang [2 ]
Katzgraber, Helmut G. [3 ,5 ]
Troyer, Matthias [4 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Amazon Quantum Solut Lab, Seattle, WA 98170 USA
[4] Microsoft, Microsoft Quantum, Redmond, WA 98052 USA
[5] Amazon Web Serv, Seattle, WA USA
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
欧盟地平线“2020”;
关键词
D O I
10.1103/PRXQuantum.2.040322
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to treat all-to-all-connected quadratic binary optimization problems (QUBOs) with hard- ware quantum annealers, an embedding of the original problem is required due to the sparsity of the topology of the hardware. The embedding of fully connected graphs-typically found in industrial applications incurs a quadratic space overhead and thus a significant overhead in the time to solution. Here, we investigate this embedding penalty of established planar embedding schemes such as square-lattice embedding, embedding on a chimera lattice, and the Lechner-Hauke-Zoller scheme, using simulated quantum annealing on classical hardware. Large-scale quantum Monte Carlo simulation suggests a polynomial time-to-solution overhead. Our results demonstrate that standard analog quantum annealing hardware is at a disadvantage in comparison to classical digital annealers, as well as gate-model quantum annealers, and could also serve as a benchmark for improvements of the standard quantum annealing protocol.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Reexamining classical and quantum models for the D-Wave One processor [J].
Albash, T. ;
Ronnow, T. F. ;
Troyer, M. ;
Lidar, D. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (01) :111-129
[2]   Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing [J].
Albash, Tameem ;
Lidar, Daniel A. .
PHYSICAL REVIEW X, 2018, 8 (03)
[3]   Consistency tests of classical and quantum models for a quantum annealer [J].
Albash, Tameem ;
Vinci, Walter ;
Mishra, Anurag ;
Warburton, Paul A. ;
Lidar, Daniel A. .
PHYSICAL REVIEW A, 2015, 91 (04)
[4]  
[Anonymous], 2017, ARXIV170809780
[5]  
[Anonymous], 2013, PHYSICS
[6]  
Aramon M., 2018, ARXIV180608815, V59
[7]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
[8]   Experimental signature of programmable quantum annealing [J].
Boixo, Sergio ;
Albash, Tameem ;
Spedalieri, Federico M. ;
Chancellor, Nicholas ;
Lidar, Daniel A. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[10]   Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor [J].
Bunyk, Paul I. ;
Hoskinson, Emile M. ;
Johnson, Mark W. ;
Tolkacheva, Elena ;
Altomare, Fabio ;
Berkley, Andrew J. ;
Harris, Richard ;
Hilton, Jeremy P. ;
Lanting, Trevor ;
Przybysz, Anthony J. ;
Whittaker, Jed .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)