Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease

被引:11
作者
Cavanagh, Henry [1 ]
Mosbach, Andreas [2 ]
Scalliet, Gabriel [2 ]
Lind, Rob [3 ]
Endres, Robert G. [1 ]
机构
[1] Imperial Coll London, Ctr Integrat Syst Biol & Bioinformat, London SW7 2BU, England
[2] Syngenta Crop Protect AG, Schaffhauserstr 101, CH-4332 Stein, Switzerland
[3] Syngenta Int Res Ctr, Jealotts Hill RG42 6EY, Berks, England
基金
英国生物技术与生命科学研究理事会;
关键词
NETWORKS;
D O I
10.1038/s41467-021-26577-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Medicines and agricultural biocides are often discovered using large phenotypic screens across hundreds of compounds, where visible effects of whole organisms are compared to gauge efficacy and possible modes of action. However, such analysis is often limited to human-defined and static features. Here, we introduce a novel framework that can characterize shape changes (morphodynamics) for cell-drug interactions directly from images, and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean rust crop pathogen. We describe population development over a 2D space of shapes (morphospace) using two models with condition-dependent parameters: a top-down Fokker-Planck model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. We discover a variety of landscapes, describing phenotype transitions during growth, and identify possible perturbations in the tip growth machinery that cause this variation. This demonstrates a widely-applicable integration of unsupervised learning and biophysical modeling. Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[2]   Shape dynamics of growing cell walls [J].
Banerjee, Shiladitya ;
Scherer, Norbert F. ;
Dinner, Aaron R. .
SOFT MATTER, 2016, 12 (14) :3442-3450
[3]   Measuring behavior across scales [J].
Berman, Gordon J. .
BMC BIOLOGY, 2018, 16
[4]   Mapping the stereotyped behaviour of freely moving fruit flies [J].
Berman, Gordon J. ;
Choi, Daniel M. ;
Bialek, William ;
Shaevitz, Joshua W. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (99)
[5]   Symmetry Breaking in Spore Germination Relies on an Interplay between Polar Cap Stability and Spore Wall Mechanics [J].
Bonazzi, Daria ;
Julien, Jean-Daniel ;
Romao, Maryse ;
Seddiki, Rima ;
Piel, Matthieu ;
Boudaoud, Arezki ;
Minc, Nicolas .
DEVELOPMENTAL CELL, 2014, 28 (05) :534-546
[6]   A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion [J].
Brown, Andre E. X. ;
Yemini, Eviatar I. ;
Grundy, Laura J. ;
Jucikas, Tadas ;
Schafer, William R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (02) :791-796
[7]   Shape and Dynamics of Tip-Growing Cells [J].
Campas, Otger ;
Mahadevan, L. .
CURRENT BIOLOGY, 2009, 19 (24) :2102-2107
[8]   Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease [J].
Cavanagh, Henry ;
Mosbach, Andreas ;
Scalliet, Gabriel ;
Lind, Rob ;
Endres, Robert G. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]  
Chan C. K., QUANTITATIVE COMP PR, DOI [10.1101/2020.06.26.174474(2020, DOI 10.1101/2020.06.26.174474(2020]
[10]   SOLVING INVERSE STOCHASTIC PROBLEMS FROM DISCRETE PARTICLE OBSERVATIONS USING THE FOKKER-PLANCK EQUATION AND PHYSICS-INFORMED NEURAL NETWORKS [J].
Chen, Xiaoli ;
Yang, Liu ;
Duan, Jinqiao ;
Karniadakis, George E. M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :B811-B830