Scaling Laws in the Ductile Fracture of Metallic Crystals

被引:1
作者
Baskes, M. I. [1 ,2 ,3 ]
Ortiz, M. [4 ]
机构
[1] Mississippi State Univ, Bagley Coll Engn, Mississippi State, MS 39762 USA
[2] Univ Calif San Diego, Jacobs Sch Engn, La Jolla, CA 92093 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2015年 / 82卷 / 07期
基金
美国国家科学基金会;
关键词
VOID GROWTH; CRACK-GROWTH; LATTICE-DEFECTS; COALESCENCE; FAILURE; LOCALIZATION; TOUGHNESS; DYNAMICS; HYDROGEN; NICKEL;
D O I
10.1115/1.4030329
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We explore whether the continuum scaling behavior of the fracture energy of metals extends down to the atomistic level. We use an embedded atom method (EAM) model of Ni, thus bypassing the need to model strain-gradient plasticity at the continuum level. The calculations are performed with a number of different 3D periodic size cells using standard molecular dynamics (MD) techniques. A void nucleus of a single vacancy is placed in each cell and the cell is then expanded through repeated NVT MD increments. For each displacement, we then determine which cell size has the lowest energy. The optimal cell size and energy bear a power-law relation to the opening displacement that is consistent with continuum estimates based on strain-gradient plasticity (Fokoua et al., 2014, "Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation," Arch. Ration. Mech. Anal. (in press); Fokoua et al., 2014, "Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity," J. Mech. Phys. Solids, 62, pp. 295-311). The persistence of power-law scaling of the fracture energy down to the atomistic level is remarkable.
引用
收藏
页数:5
相关论文
共 32 条
[1]   TRAPPING OF HYDROGEN TO LATTICE-DEFECTS IN NICKEL [J].
ANGELO, JE ;
MOODY, NR ;
BASKES, MI .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1995, 3 (03) :289-307
[2]  
[Anonymous], ADV APPL MECH
[3]  
ASM, 2002, ATL STRESS STRAIN CU
[4]   Trapping of hydrogen to lattice defects in nickel [J].
Baskes, MI ;
Sha, XW ;
Angelo, JE ;
Moody, NR .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1997, 5 (06) :651-652
[5]   AN ANALYSIS OF DUCTILE FAILURE BY GRAIN-BOUNDARY VOID GROWTH [J].
BECKER, R ;
NEEDLEMAN, A ;
SURESH, S ;
TVERGAARD, V ;
VASUDEVAN, AK .
ACTA METALLURGICA, 1989, 37 (01) :99-120
[6]   VOID GROWTH AND FAILURE IN NOTCHED BARS [J].
BECKER, R ;
NEEDLEMAN, A ;
RICHMOND, O ;
TVERGAARD, V .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1988, 36 (03) :317-&
[7]   A viscoplastic strain gradient analysis of materials with voids or inclusions [J].
Borg, Ulrik ;
Niordson, Christian F. ;
Fleck, Norman A. ;
Tvergaard, Viggo .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (16) :4906-4916
[8]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[9]   Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation [J].
Fokoua, Landry ;
Conti, Sergio ;
Ortiz, Michael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (01) :331-357
[10]   Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity [J].
Fokoua, Landry ;
Conti, Sergio ;
Ortiz, Michael .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 62 :295-311