Categorical Functional Data Analysis. The cfda R Package

被引:2
|
作者
Preda, Cristian [1 ,2 ,3 ]
Grimonprez, Quentin [4 ]
Vandewalle, Vincent [3 ,5 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59000 Lille, France
[2] Romanian Acad, Inst Stat & Appl Math, Bucharest 050711, Romania
[3] Inria Lille Nord Europe, MODAL, F-59655 Villeneuve Dascq, France
[4] DiagRAMS Technol, F-59000 Lille, France
[5] Univ Lille, CHU Lille, ULR 2694, Biostat Dept,METRICS, F-59000 Lille, France
关键词
functional data; categorical data; stochastic process; multiple correspondence analysis;
D O I
10.3390/math9233074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Categorical functional data represented by paths of a stochastic jump process with continuous time and a finite set of states are considered. As an extension of the multiple correspondence analysis to an infinite set of variables, optimal encodings of states over time are approximated using an arbitrary finite basis of functions. This allows dimension reduction, optimal representation, and visualisation of data in lower dimensional spaces. The methodology is implemented in the cfda R package and is illustrated using a real data set in the clustering framework.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] New Approaches in Visualization of Categorical Data: R Package extracat
    Pilhoefer, Alexander
    Unwin, Antony
    JOURNAL OF STATISTICAL SOFTWARE, 2013, 53 (07): : 1 - 25
  • [2] fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data
    Gorecki, Tomasz
    Smaga, Lukasz
    COMPUTATIONAL STATISTICS, 2019, 34 (02) : 571 - 597
  • [3] fdANOVA: an R software package for analysis of variance for univariate and multivariate functional data
    Tomasz Górecki
    Łukasz Smaga
    Computational Statistics, 2019, 34 : 571 - 597
  • [4] Multivariate analysis of mixed data. The R Package PCAmixdata
    Chavent, Marie
    Kuentz, Vanessa
    Labenne, Amaury
    Saracco, Jerome
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 606 - 645
  • [5] Structural analysis of subjective categorical data
    Klauer, KC
    Batchelder, WH
    PSYCHOMETRIKA, 1996, 61 (02) : 199 - 239
  • [6] Categorical data analysis in experimental biology
    Xu, Bo
    Feng, Xuyan
    Burdine, Rebecca D.
    DEVELOPMENTAL BIOLOGY, 2010, 348 (01) : 3 - 11
  • [7] Missing data mechanisms and their implications on the analysis of categorical data
    Poleto, Frederico Z.
    Singer, Julio M.
    Paulino, Carlos Daniel
    STATISTICS AND COMPUTING, 2011, 21 (01) : 31 - 43
  • [8] Missing data mechanisms and their implications on the analysis of categorical data
    Frederico Z. Poleto
    Julio M. Singer
    Carlos Daniel Paulino
    Statistics and Computing, 2011, 21 : 31 - 43
  • [9] Differential privacy in metric spaces: Numerical, categorical and functional data under the one roof
    Holohan, Naoise
    Leith, Douglas J.
    Mason, Oliver
    INFORMATION SCIENCES, 2015, 305 : 256 - 268
  • [10] Watermarking Categorical Data : Algorithm and Robustness Analysis
    Khanduja, Vidhi
    Chakraverty, Shampa
    Verma, Om Prakash
    DEFENCE SCIENCE JOURNAL, 2015, 65 (03) : 226 - 232