SPECTRAL-SPATIAL HYPERSPECTRAL CLASSIFICATION VIA SHAPE-ADAPTIVE SPARSE REPRESENTATION

被引:7
作者
Fu, Wei [1 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Kang, Xudong [1 ]
Benediktsson, Jon Atli
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
来源
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2014年
关键词
hyperspectral image; classification; shape-adaptive; sparse representation; spatial information; PURSUIT;
D O I
10.1109/IGARSS.2014.6947219
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new spectral-spatial hyperspectral classification method named the shape-adaptive sparse representation (SASR). The fixed window is not suitable for all pixels of hyperspectral image (HSI) to search local similar regions. In order to overcome the drawback, we propose to apply the shape-adaptive algorithm to exploit the contextual spatial information of HSI. Furthermore, the hyperspectral classification is implemented by incorporating the spatial contextual information of HSI into the sparse representation classification model. Experimental results demonstrate the superiority of the proposed SASR method over both classical and state-of-the-art approaches.
引用
收藏
页码:3430 / 3433
页数:4
相关论文
共 12 条
[1]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[2]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[3]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[4]  
Foi A., 2004, Proceedings of the 6th IMA Int. Conf. Math. in Signal Processing, V5685, P79
[5]  
FOI A, 2007, IEEE T IMAGE PROCESS, V16
[6]   A new method for varying adaptive bandwidth selection [J].
Katkovnik, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (09) :2567-2571
[7]   Generalized Composite Kernel Framework for Hyperspectral Image Classification [J].
Li, Jun ;
Marpu, Prashanth Reddy ;
Plaza, Antonio ;
Bioucas-Dias, Jose M. ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09) :4816-4829
[8]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790
[9]   Limitations of Principal Components Analysis for Hyperspectral Target Recognition [J].
Prasad, Saurabh ;
Bruce, Lori Mann .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) :625-629
[10]   Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit [J].
Tropp, JA ;
Gilbert, AC ;
Strauss, MJ .
SIGNAL PROCESSING, 2006, 86 (03) :572-588