Drosophila melanogaster as a model organism to study nanotoxicity

被引:108
作者
Ong, Cynthia [1 ]
Yung, Lin-Yue Lanry [2 ]
Cai, Yu [3 ]
Bay, Boon-Huat [1 ]
Baeg, Gyeong-Hun [1 ]
机构
[1] Natl Univ Singapore, Dept Anat, Yong Loo Lin Sch Med, Singapore 117594, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Fac Engn, Singapore 117594, Singapore
[3] Natl Univ Singapore, Temasek Life Sci Lab, Singapore 117594, Singapore
基金
新加坡国家研究基金会;
关键词
Drosophila melanogaster; in vivo model organism; nanomaterials; toxicity; TITANIUM-DIOXIDE NANOPARTICLES; WALLED CARBON NANOTUBES; CELLS IN-VITRO; GOLD NANOPARTICLES; OXIDATIVE STRESS; SILVER NANOPARTICLES; EPITHELIAL-CELLS; DIFFERENTIAL TOXICITY; SILICA NANOPARTICLES; LUNG FIBROBLASTS;
D O I
10.3109/17435390.2014.940405
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 91 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function [J].
Adolfsson, Karl ;
Schneider, Martina ;
Hammarin, Greger ;
Hacker, Udo ;
Prinz, Christelle N. .
NANOTECHNOLOGY, 2013, 24 (28)
[3]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[4]   Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice [J].
Ambalavanan, Namasivayam ;
Stanishevsky, Andrei ;
Bulger, Arlene ;
Halloran, Brian ;
Steele, Chad ;
Vohra, Yogesh ;
Matalon, Sadis .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2013, 304 (03) :L152-L161
[5]   Mechanism of Silver Nanoparticles Action on Insect Pigmentation Reveals Intervention of Copper Homeostasis [J].
Armstrong, Najealicka ;
Ramamoorthy, Malaisamy ;
Lyon, Delina ;
Jones, Kimberly ;
Duttaroy, Atanu .
PLOS ONE, 2013, 8 (01)
[6]  
AUERBACH C, 1947, GENETICS, V32, P3
[7]   Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats [J].
Balasubramanian, Suresh K. ;
Jittiwat, Jinattal ;
Manikandan, Jayapal ;
Ong, Choon-Nam ;
Yu, Liya E. ;
Ong, Wei-Yi .
BIOMATERIALS, 2010, 31 (08) :2034-2042
[8]   Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo [J].
Barandeh, Farda ;
Phuong-Lan Nguyen ;
Kumar, Rajiv ;
Iacobucci, Gary J. ;
Kuznicki, Michelle L. ;
Kosterman, Andrew ;
Bergey, Earl J. ;
Prasad, Paras N. ;
Gunawardena, Shermali .
PLOS ONE, 2012, 7 (01)
[9]   TIMELINE 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future [J].
Bellen, Hugo J. ;
Tong, Chao ;
Tsuda, Hiroshi .
NATURE REVIEWS NEUROSCIENCE, 2010, 11 (07) :514-+
[10]   Toxic potential of municipal solid waste leachates in transgenic Drosophila melanogaster (hsp70-lacZ):: hsp70 as a marker of cellular damage [J].
Bhargav, Devyam ;
Singh, Mahendra Pratap ;
Murthy, Ramesh Chandra ;
Mathur, N. ;
Misra, Divya ;
Saxena, Daya Krishna ;
Chowdhuri, Debapratim Kar .
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2008, 69 (02) :233-245