A Finite Element Solution of the Forward Problem in EEG for Multipolar Sources

被引:11
作者
Beltrachini, L. [1 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Brain Res Imaging Ctr, Cardiff CF24 4HQ, S Glam, Wales
关键词
EEG; forward problem; extended sources; subtraction approach; finite element method; MEG; DIPOLE; LOCALIZATION; MODELS; MAGNETOENCEPHALOGRAPHY; GENERATORS; ELECTRODE; EEG/MEG; FIELDS; BOUNDS;
D O I
10.1109/TNSRE.2018.2886638
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multipolar source models have been presented in the context of electro/magnetoencephalography (E/MEG) to compensate for the limitations of the classical equivalent current dipole to represent realistic generators of brain activity. Although there exist several reports accounting for the advantagesofmultipolarcomponents over single dipoles, there is still no available numerical implementation in fully personalized scenarios. In this paper, we present, for the first time, a finite element framework for simulating EEG signals generated by multipolar current sources in individualized, heterogeneous, and anisotropic head models. This formulation is based on the subtraction approach, guaranteeing the existence and uniqueness of the solution. In particular, we analyze the cases of monopolar, dipolar, and quadrupolar source components, for which we study their performance in idealized and realistic head models. Numerical solutions are compared with analytical formulas in multi-layered spherical models. Such formulas are available in the case of monopolar and dipolar sources, and here derived for the quadrupolar components. We finally illustrate their advantages in the description of extended current generators using a realistic head model. The framework presented here enables further analysis towards the estimation of biophysically principled source parameters from standard E/MEG experiments.
引用
收藏
页码:368 / 377
页数:10
相关论文
共 57 条
[11]   Electroencephalogram in humans [J].
Berger, H .
ARCHIV FUR PSYCHIATRIE UND NERVENKRANKHEITEN, 1929, 87 :527-570
[12]   Spatiotemporal Analysis of Multichannel EEG: CARTOOL [J].
Brunet, Denis ;
Murray, Micah M. ;
Michel, Christoph M. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[13]   Inverse localization of electric dipole current sources in finite element models of the human head [J].
Buchner, H ;
Knoll, G ;
Fuchs, M ;
Rienacker, A ;
Beckmann, R ;
Wagner, M ;
Silny, J ;
Pesch, J .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1997, 102 (04) :267-278
[14]   EFFECTS OF HEAD SHAPE ON EEGS AND MEGS [J].
CUFFIN, BN .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1990, 37 (01) :44-52
[15]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[16]   Modeling of the Human Skull in EEG Source Analysis [J].
Dannhauer, Moritz ;
Lanfer, Benjamin ;
Wolters, Carsten H. ;
Knoesche, Thomas R. .
HUMAN BRAIN MAPPING, 2011, 32 (09) :1383-1399
[17]   MATHEMATICAL DIPOLES ARE ADEQUATE TO DESCRIBE REALISTIC GENERATORS OF HUMAN-BRAIN ACTIVITY [J].
DEMUNCK, JC ;
VANDIJK, BW ;
SPEKREIJSE, H .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1988, 35 (11) :960-966
[18]   A RANDOM DIPOLE MODEL FOR SPONTANEOUS BRAIN ACTIVITY [J].
DEMUNCK, JC ;
VIJN, PCM ;
DASILVA, FHL .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (08) :791-804
[19]   A FAST METHOD TO COMPUTE THE POTENTIAL IN THE MULTISPHERE MODEL [J].
DEMUNCK, JC ;
PETERS, MJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1993, 40 (11) :1166-1174
[20]   A full subtraction approach for finite element method based source analysis using constrained Delaunay tetrahedralisation [J].
Drechsler, F. ;
Wolters, C. H. ;
Dierkes, T. ;
Si, H. ;
Grasedyck, L. .
NEUROIMAGE, 2009, 46 (04) :1055-1065