Shape based segmentation of anatomical structures in magnetic resonance images

被引:0
作者
Pohl, KM
Fisher, J
Kikinis, R
Grimson, WEL
Wells, WM
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Med, Surg Planning Lab, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Boston, MA 02115 USA
来源
COMPUTER VISION FOR BIOMEDICAL IMAGE APPLICATIONS, PROCEEDINGS | 2005年 / 3765卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Standard image based segmentation approaches perform poorly when there is little or no contrast along boundaries of different regions. In such cases, segmentation is largely performed manually using prior knowledge of the shape and relative location of the underlying structures combined with partially discernible boundaries. We present an automated approach guided by covariant shape deformations of neighboring structures, which is an additional source of prior information. Captured by a shape atlas, these deformations are transformed into a statistical model using the logistic function. Structure boundaries, anatomical labels, and image inhomogeneities are estimated simultaneously within an Expectation-Maximization formulation of the maximum a posteriori probability estimation problem. We demonstrate the approach on 20 brain magnetic resonance images showing superior performance, particularly in cases where purely image based methods fail.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
[41]   Magnetic Resonance Images Segmentation of Multifidus based on Dense-unet and Superpixel [J].
Xu, Rui ;
Guo, Xin ;
Wang, Zimin ;
Guan, Tingqiang ;
Zhou, Yue .
CURRENT MEDICAL IMAGING, 2024, 20
[42]   Fuzzy neural network based segmentation of multispectral magnetic resonance brain images [J].
Blonda, P ;
Bennardo, A ;
Satalino, G ;
Pasquariello, G ;
DeBlasi, R ;
Milella, D .
APPLICATIONS OF FUZZY LOGIC TECHNOLOGY III, 1996, 2761 :146-153
[43]   Segmentation of Anatomical Structures in Four-chamber View Echocardiogram Images [J].
Cao, Yu ;
McNeillie, Patrick ;
Syeda-Mahmood, Tanveer .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :568-573
[44]   Fuzzy-snake segmentation of anatomical structures applied to CT images [J].
Bueno, G ;
Martínez-Albalá, A ;
Adán, A .
IMAGE ANALYSIS AND RECOGNITION, PT 2, PROCEEDINGS, 2004, 3212 :33-42
[45]   Segmentation of the left ventricular endocardium from magnetic resonance images by using different statistical shape models [J].
Piazzese, Concetta ;
Carminati, M. Chiara ;
Colombo, Andrea ;
Krause, Rolf ;
Potse, Mark ;
Auricchio, Angelo ;
Weinert, Lynn ;
Tamborini, Gloria ;
Pepi, Mauro ;
Lang, Roberto M. ;
Caiani, Enrico G. .
JOURNAL OF ELECTROCARDIOLOGY, 2016, 49 (03) :383-391
[46]   Evaluation of different statistical shape models for segmentation of the left ventricular endocardium from magnetic resonance images [J].
Piazzese, Concetta ;
Carminati, M. Chiara ;
Colombo, Andrea ;
Krause, Rolf ;
Potse, Mark ;
Weinert, Lynn ;
Tamborini, Gloria ;
Pepi, Mauro ;
Lang, Roberto M. ;
Caiani, Enrico G. .
2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 :105-108
[47]   Knee cartilage segmentation using active shape models and contrast enhancement from magnetic resonance images [J].
Gonzalez, German ;
Escalante-Ramirez, Boris .
IX INTERNATIONAL SEMINAR ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2013, 8922
[48]   Automatic Localization and Segmentation of the Ventricles in Magnetic Resonance Images [J].
Wang, ZhenZhou .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) :621-631
[49]   Segmentation of the mouse hippocampal formation in magnetic resonance images [J].
Richards, Kay ;
Watson, Charles ;
Buckley, Rachel F. ;
Kurniawan, Nyoman D. ;
Yang, Zhengyi ;
Keller, Marianne D. ;
Beare, Richard ;
Bartlett, Perry F. ;
Egan, Gary F. ;
Galloway, Graham J. ;
Paxinos, George ;
Petrou, Steven ;
Reutens, David C. .
NEUROIMAGE, 2011, 58 (03) :732-740
[50]   Segmentation of Brain Tumor Parts in Magnetic Resonance Images [J].
Mikulka, Jan ;
Burget, Radim ;
Riha, Kamil ;
Gescheidtova, Eva .
2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2013, :565-568