Central Limit Theorem for ISE of Kernel Density Estimators in Censored Dependent Model

被引:4
作者
Jomhoori, Sarah [1 ]
Fakoor, Vahid [1 ]
Azarnoosh, Hasanali [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Stat, Mashhad, Iran
关键词
alpha-mixing; Bandwidth; Censored dependent data; Integrated square error; Kaplan-Meier estimator; Kernel density estimator; INTEGRATED SQUARE ERROR; HAZARD RATE;
D O I
10.1080/03610926.2010.542849
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In some long-term studies, a series of dependent and possibly censored failure times may be observed. Suppose that the failure times have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the failure times and its kernel estimate f(n) is the integrated square error(ISE). In this article, we derive a central limit theorem for the integrated square error of the kernel density estimators under a censored dependent model.
引用
收藏
页码:1334 / 1349
页数:16
相关论文
共 19 条