Explicit Expression for Arbitrary Positive Integer Powers of Special Sparse Matrices

被引:0
作者
Beiranvand, Mohammad [1 ]
Kamalvand, Mojtaba Ghasemi [1 ]
机构
[1] Lorestan Univ, Dept Math, Khorramabad, Iran
关键词
ANTI-TRIDIAGONAL MATRICES;
D O I
10.1155/2022/1076545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sparse matrices appear frequently in mathematical models. In this paper, we firstly present a general expression for the entries of the r th (r is an element of N) power of a certain n-square sparse matrix, in terms of the Chebyshev polynomials of the second kind. Secondly, we present a method for integer positive powers of the skew matrix corresponding to these sparse matrices. This method will be inspiring to calculate the positive integer powers of the similar matrices. Finally, we present some examples to illustrate our results. Also, we give maple 18 procedures in order to verify our calculations.
引用
收藏
页数:13
相关论文
共 19 条
[1]  
Agarwal RP., 1992, DIFFERENCE EQUATIONS
[2]  
[Anonymous], 1990, Correlation methods
[3]   Positive Integer Powers of Certain Tridiagonal Matrices and Corresponding Anti-Tridiagonal Matrices [J].
Beiranvand, Mohammad ;
Kamalvand, Mojtaba Ghasemi .
ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
[4]   Explicit Expression for Arbitrary Positive Powers of Special Tridiagonal Matrices [J].
Beiranvand, Mohammad ;
Kamalvand, Mojtaba Ghasemi .
JOURNAL OF APPLIED MATHEMATICS, 2020, 2020 (2020)
[5]   Integer Powers of Certain Complex Tridiagonal Matrices and Some Complex Factorizations [J].
Bozkurt, Durmus ;
Altindag, S. Burcu Bozkurt .
FILOMAT, 2017, 31 (15) :4715-4724
[6]  
Cahill ND, 2003, FIBONACCI QUART, V41, P13
[7]   A note on computing of positive integer powers for circulant matrices [J].
Feng, Jishe .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 223 :472-475
[8]   A Note on the Use of Step Responses Matrix and Lambert W Function in the Dynamics Analysis of Time Delay Systems [J].
Jankauskiene, Irma ;
Rimas, Jonas .
INFORMATION TECHNOLOGY AND CONTROL, 2017, 46 (02) :102-+
[9]   Positive integer powers for one type of odd order circulant matrices [J].
Koken, Fikri ;
Bozkurt, Durmus .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4377-4381
[10]  
Leonaite G., 2006, Information Technology and Control, V35, P65