The Generalized Langevin Equation in Harmonic Potentials: Anomalous Diffusion and Equipartition of Energy

被引:2
作者
Didier, Gustavo [1 ]
Nguyen, Hung D. [2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
关键词
SLOWLY VARYING FUNCTIONS; ASYMPTOTIC-BEHAVIOR; TRANSPORT; MEMORY;
D O I
10.1007/s00220-022-04378-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the generalized Langevin equation (GLE) in a harmonic potential with power law decay memory. We study the anomalous diffusion of the particle's displacement and velocity. By comparison with the free particle situation in which the velocity was previously shown to be either diffusive or subdiffusive, we find that, when trapped in a harmonic potential, the particle's displacement may either be diffusive or superdiffusive. Under slightly stronger assumptions on the memory kernel, namely, for kernels related to the broad class of completely monotonic functions, we show that both the free particle and the harmonically bounded GLE satisfy the equipartition of energy condition. This generalizes previously known results for the GLE under particular kernel instances such as the generalized Rouse kernel or (exactly) a power law function.
引用
收藏
页码:909 / 954
页数:46
相关论文
共 50 条
[21]   Numerical approximation and fast evaluation of the overdamped generalized Langevin equation with fractional noise [J].
Fang, Di ;
Li, Lei .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (02) :431-463
[22]   Confined fluid dynamics in a viscoelastic, amorphous, and microporous medium: Study of a kerogen by molecular simulations and the generalized Langevin equation [J].
Ariskina, Kristina ;
Galliero, Guillaume ;
Obliger, Amael .
JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (12)
[23]   Enhanced localization, energy anomalous diffusion and resonant mode in harmonic chains with correlated mass-spring disorder [J].
de Albuquerque, S. S. ;
dos Santos, J. L. L. ;
de Moura, F. A. B. F. ;
Lyra, M. L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (17)
[24]   Semi-classical generalized Langevin equation for equilibrium and nonequilibrium molecular dynamics simulation [J].
Lu, Jing-Tao ;
Hu, Bing-Zhong ;
Hedegard, Per ;
Brandbyge, Mads .
PROGRESS IN SURFACE SCIENCE, 2019, 94 (01) :21-40
[25]   Resonance behavior for a generalized Mittag-Leffler fractional Langevin equation with hydrodynamic interactions [J].
He, Guitian ;
Liu, Heng ;
Tang, Guoji ;
Cao, Jinde .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (32)
[26]   Levy anomalous diffusion and fractional Fokker-Planck equation [J].
Yanovsky, VV ;
Chechkin, AV ;
Schertzer, D ;
Tur, AV .
PHYSICA A, 2000, 282 (1-2) :13-34
[27]   Generalized diffusion-wave equation with memory kernel [J].
Sandev, Trifce ;
Tomovski, Zivorad ;
Dubbeldam, Johan L. A. ;
Chechkin, Aleksei .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (01)
[28]   Accurate and robust splitting methods for the generalized Langevin equation with a positive Prony series memory kernel [J].
Duong, Manh Hong ;
Shang, Xiaocheng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 464
[29]   Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel [J].
Baczewski, Andrew D. ;
Bond, Stephen D. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (04)
[30]   Generalized autocorrelation function in the family of deterministic and stochastic anomalous diffusion processes [J].
Tayyab, Muhammad .
PHYSICAL REVIEW RESEARCH, 2024, 6 (03)