A tutorial on Bayesian nonparametric models

被引:382
作者
Gershman, Samuel J. [1 ,2 ]
Blei, David M. [3 ]
机构
[1] Princeton Univ, Dept Psychol, Princeton, NJ 08540 USA
[2] Princeton Univ, Princeton Neurosci Inst, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Bayesian methods; Chinese restaurant process; Indian buffet process; DIRICHLET; INFERENCE; SELECTION; MIXTURES; TIMES;
D O I
10.1016/j.jmp.2011.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A key problem in statistical modeling is model selection, that is, how to choose a model at an appropriate level of complexity. This problem appears in many settings, most prominently in choosing the number of clusters in mixture models or the number of factors in factor analysis. In this tutorial, we describe Bayesian nonparametric methods, a class of methods that side-steps this issue by allowing the data to determine the complexity of the model. This tutorial is a high-level introduction to Bayesian nonparametric methods and contains several examples of their application. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 87 条
[1]  
Aldous D. J., 1985, Lecture notes in mathematics, P1, DOI 10.1007/BFb0099421.548,552
[2]   THE ADAPTIVE NATURE OF HUMAN CATEGORIZATION [J].
ANDERSON, JR .
PSYCHOLOGICAL REVIEW, 1991, 98 (03) :409-429
[3]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[4]  
[Anonymous], 2009, Artificial Intelligence and Statistics
[5]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[6]  
Attias H, 2000, ADV NEUR IN, V12, P209
[7]  
Austerweil J., 2009, ADV NEURAL INFORM PR, V21, P386
[8]  
Beal MJ, 2002, ADV NEUR IN, V14, P577
[9]  
Bernardo JM., 1994, Bayesian Theory, DOI [DOI 10.1002/9780470316870, 10.1002/9780470316870]
[10]  
Bishop C.M., 2006, PATTERN RECOGNITION, DOI [10.5555/1162264, DOI 10.18637/JSS.V017.B05]